
Chapter 1

Divisibility

Number theory is concerned with the properties of the integers. By the
word integers we mean the counting numbers 1, 2, 3, . . . , together with
their negatives and zero. Accordingly the word number, loosely used or
symbolically denoted throughout this book, will be understood an integer,
unless otherwise stated.

1.1 Divisors and Residues

It is reasonable to claim without proof that performing an addition, sub-
traction, or multiplication with two integers will result in another integer.
Dividing an integer by another, however, does not always return an integer
value—and that is exactly where we begin the study of numbers.

We shall denote the output in dividing m by d using the notation m

d
or

m/d. In general, for d 6= 0, the quantity m/d is called a rational number.

Definition. We say that the integer d divides m, or that m is divisible by d,
if m/d is again an integer.1 Such a relation may be written d | m, or d ∤ m
if it is not true. When d | m, we also say that d is a divisor or a factor of
m, whereas we will call m a multiple of d.

Example. To illustrate the idea, let us consider a few examples.

1. The number 3 divides 18 since 18/3 = 6, an integer. We write 3 | 18.

2. We have 5 ∤ 18 because 18/5 = 3.6, not an integer. Hence, 5 is not a
divisor of 18.

1Alternately, d divides m if there is an integer c such that cd = m. This is the more
versatile definition since, for one thing, division requires borrowing from the higher field
of rational numbers. The two definitions differ in one minor case—can you identify it?
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2 Theory of Numbers

3. Both the numbers 28 and 42 have 7 as a common factor. We can see
this by writing 28 = 7 × 4 and 42 = 7 × 6.

4. Multiples of 2 are integers of the form 2k. These are the numbers
0, ±2, ±4, ±6, . . . , which we call the even numbers. The remaining,
noneven integers are the odd numbers, i.e., not divisible by 2.

Exercise 1.1. Does 7 divide 19392?2

Note that 0 cannot divide any number, for division by 0 is not allowed.
However, the number 0 is always divisible by other integers! This and some
other elementary facts about divisibility are listed next.

Proposition 1.1. The following statements hold.

1) The number 1 divides all integers.

2) If d 6= 0, then d | 0 and d | d.

3) If d | m and m | n, then d | n.

4) If d | m and d | n, then d | (am + bn) for any integers a and b.

Proof. The first two statements follow immediately from the definition of
divisibility. For (3) we simply observe that if m/d and n/m are integers,
then so is n/d = n/m × m/d. Similarly for (4), the number

am + bn

d
= a ×

m

d
+ b ×

n

d

is an integer when d | m and d | n. ▽

The sum of any multiples of m and n, i.e., am + bn, is commonly called
a linear combination of m and n. Proposition 1.1(4) states, in other words,
that a common divisor of two numbers divides their linear combinations too.

Exercise 1.2. Investigate true or false.

a) If d | m then d ≤ m.
b) If m | n and n | m, then m = n.
c) If c | m and d | n, then cd | mn.
d) If d | mn, then either d | m or d | n.
e) If dn | mn then d | m.

Exercise 1.3. Prove that n2 + 2 is not divisible by 4 for any integer n.

2The number 19392 is a zip code earlier seen in this book!
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Definition. For any real number x, the notation ⌊x⌋ denotes the greatest
integer no more than x. For example, ⌊3.14⌋ = 3 and ⌊2⌋ = 2. The function
f(x) = ⌊x⌋ is known as the floor function, and ⌊x⌋ reads the floor of x. It
is useful to note the inequalities ⌊x⌋ ≤ x < ⌊x⌋ + 1.

Exercise 1.4. Evaluate ⌊19392/7⌋.

Exercise 1.5. The ceiling function ⌈x⌉, a companion to the floor function,
returns the least integer value no less than x. Prove the chain of inequalities
⌈x⌉ − 1 ≤ ⌊x⌋ ≤ x ≤ ⌈x⌉ ≤ ⌊x⌋ + 1.

Definition. With n > 0, we define the residue of m mod n,

m % n = m −
⌊m

n

⌋

× n

Here, the symbol % is used to stand for the word mod.3 For example, since
⌊18/5⌋ = 3, then 18 %5 = 18−3×5 = 3. Similarly, 18 %3 = 18−6×3 = 0.
Refering to the operation m % n, we at times say that m is reduced mod n.

Exercise 1.6. Find these residues.

a) 369 %5
b) 24 %8
c) 123456789 %10
d) 19392 %7
e) 7 %11

Exercise 1.7. Suppose the time is now 11 o’clock in the morning. What
time will it be after 100 hours? How does this problem relate to residues?

Note that m % n is really the remainder upon dividing m by n, using the
long division technique taught in grade school, and that it lies in the range
0 ≤ m % n ≤ n − 1. In particular, m % n = 0 if and only if n | m. These
claims, though seemingly obvious, need to be stated and proved carefully.

Theorem 1.2. Suppose m and n are integers, with n > 0. Then

1) 0 ≤ m % n ≤ n − 1

2) m % n = 0 if and only if n | m

3) if m = qn + r with 0 ≤ r ≤ n − 1, then q = ⌊m

n
⌋ and r = m % n.

3Adopted from Java programming language, the notation m % n is a personal prefer-
ence to the usual m mod n. The latter is sometimes confused with the mod in a congruence
relation, (Chapter 3) which is very closely related to residue mod.
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Proof. Let Q = ⌊m

n
⌋ and R = m % n. By definition, we have Q ≤ m

n
, hence

R = m − Qn ≥ m − m

n
× n = 0. But we also have Q + 1 > m

n
, and so

R = m − Qn < m − (m

n
− 1)n = n. It follows that 0 ≤ R < n, proving (1).

For (2), if m

n
is an integer then clearly R = m− m

n
× n = 0. Conversely,

if 0 = R = m−Qn then Q = m

n
. Since Q is an integer, we then have n | m.

Lastly, suppose that m = qn + r with 0 ≤ r ≤ n − 1. Then m

n
= q + r

n

with 0 ≤ r

n
< 1. It can only mean, by the definition of the floor function,

that ⌊m

n
⌋ = q, from which r = m % n follows as well. ▽

Example. Let n = 2. Since m % 2 = 0 or 1, we find that the set of integers
can be partitioned in two groups, i.e., the even numbers, of the form 2k, and
the odd numbers, of the form 2k + 1. Similarly with n = 3, there are three
classes of integers, of the forms 3k, 3k + 1, and 3k + 2.

Exercise 1.8. Define the absolute residue of m mod n to be

m %% n =

{

m % n if m % n ≤ n

2

m % n − n if m % n > n

2

For lack of a better notation, we use %% to read absolute mod.

a) Show that 0 ≤ |m %% n| ≤ n/2.
b) Show that m %% n = 0 if and only if n | m.
c) Suppose m = qn + m %% n. Find the relation between q and ⌊m/n⌋.
d) Redo Exercise 1.6, replacing % by %%.

Concluding this first section, the following fact, simple but useful, can
be proved using the concept of residues.

Proposition 1.3. One in every k consecutive integers is divisible by k.

Proof. Let m be the first integer, and let r = m % k. If r = 0 then k | m.
Otherwise 1 ≤ r ≤ k − 1, and our consecutive integers can be written as

m = ⌊m

k
⌋k + r, ⌊m

k
⌋k + r + 1, ⌊m

k
⌋k + r + 2, . . . , ⌊m

k
⌋k + r + k − 1

with r + k − 1 ≥ k. Then one of these numbers is ⌊m

k
⌋k + k, which is a

multiple of k. ▽

Exercise 1.9. Prove the following statements.

a) A number in the form n2 ± n is always even.
b) A number in the form n3 − n is divisible by 3.
c) The number n2 − 1 is divisible by 8 when n is odd.
d) The number n5 − n is a multiple of 5 for every integer n.
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1.2 Greatest Common Divisors

Given two integers m and n, we can always find a common divisor, e.g.,
d = 1. Moreover, every nonzero integer can have only a finite number of
divisors, since d | m implies |d| ≤ |m|. We are then interested in finding the
greatest of all divisors common to m and n, for this quantity is of central
importance in the theory of divisibility.

Definition. The greatest common divisor of two integers m and n, not both
zero, is the largest integer which divides both. This number is denoted by
gcd(m, n). For example, gcd(18, 24) = 6 because 6 is the largest integer with
the property 6 | 18 and 6 | 24.

Exercise 1.10. Evaluate gcd(m, n).

a) gcd(28, 42)
b) gcd(36,−48)
c) gcd(24, 0)
d) gcd(1, 99)
e) gcd(123, 100)

Exercise 1.11. Find all integers n from 1 to 12 such that gcd(n, 12) = 1.

Exercise 1.12. Investigate true or false.

a) gcd(m, n) > 0
b) gcd(m, n) = gcd(m − n, n)
c) gcd(m, mn) = m
d) gcd(m, m + 1) = 1
e) gcd(m, m + 2) = 2

Now there is an algorithm to evaluate gcd(m, n) which is very time-
efficient, even for large values of m and n; and that is the well-known Eu-

clidean algorithm, which is essentially an iterative application of the follow-
ing theorem.

Theorem 1.4. For any integers m and n > 0, we have

gcd(m, n) = gcd(n, m % n)

Proof. It suffices to show that the two pairs (m, n) and (n, m% n) have
identical sets of common divisors. This is achieved entirely using Proposi-
tion 1.1(4) upon observing that, from its definition, m % n is a linear com-
bination of m and n, as is m of n and m % n. ▽
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Example (Euclidean Algorithm). Suppose we wish to evaluate gcd(486, 171).
Upon computing 486 %171 = 486 − 2 × 171 = 144, the theorem gives us
gcd(486, 171) = gcd(171, 144). We may then iterate this process another
time by computing 171 % 144, and on as follows.

486 − (2) 171 = 144 → gcd(486, 171) = gcd(171, 144)

171 − (1) 144 = 27 = gcd(144, 27)

144 − (5) 27 = 9 = gcd(27, 9)

27 − (3) 9 = 0 = gcd(9, 0)

We arrive in the end at the result gcd(486, 171) = gcd(9, 0) = 9. In general,
the answer will be the last residue before we reach m % n = 0.

Exercise 1.13. Use the Euclidean algorithm to evaluate gcd(m, n).

a) gcd(456, 144)
b) gcd(999, 503)
c) gcd(1000, 725)
d) gcd(12345, 67890)
e) gcd(19392, 29391)

Exercise 1.14. Show that gcd(m, n) = gcd(n, m%% n), and use this to
reevaluate gcd(m, n) given in Exercise 1.13. (See Exercise 1.8 for the def-
inition of absolute residue.) This makes the algorithm even faster as each
subsequent residue, in absolute value, is no more than half its predecessor.

Next, an extremely important property about greatest common divisors
is the fact that gcd(m, n) is actually a linear combination4 of m and n.

Theorem 1.5 (Bezout’s Lemma). There exist integers a and b such that

gcd(m, n) = am + bn

Proof. Since gcd(m, n) = gcd(m,−n), we may just assume that n > 0. Now
the sequence of residues in applying the Euclidean algorithm consists of
strictly decreasing positive integers, thus says Theorem 1.2(1):

gcd(m, n) = gcd(n, m% n) = gcd(m % n, n % (m % n)) = · · ·

n > m % n > n % (m % n) > · · ·

Hence this algorithm must terminate with a zero residue, say gcd(m, n) =
· · · = gcd(d, 0) = d. Since each of these residues is a linear combination of
the previous pair of integers, by going through a finite number of steps, we
may express d as a linear combination of m and n. ▽

4Remember, gcd is a linear combination!
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Exercise 1.15. Prove that if d | m and d | n, then d | gcd(m, n).

Exercise 1.16. If gcd(m, n) = am + bn, show that gcd(a, b) = 1.

The algorithm involved in actually finding the integers a and b given in
Bezout’s lemma is called the extended Euclidean algorithm. It is suggested
in the proof of Theorem 1.5 that we perform repeated backward substitu-
tions upon completing the Euclidean algorithm. This could be very messy.
Let us illustrate, instead, a neat tabular version of the extended Euclidean
algorithm, due to W. A. Blankinship (1963).

Example (Extended Euclidean Algorithm). Let us reconsider gcd(486, 171),
this time expressing it as a linear combination of 486 and 171. We form
rows of three numbers, beginning with

486 1 0
171 0 1

Since ⌊486/171⌋ = 2, we subtract 2 times the second row from the first.
This gives the next row,

144 1 −2

Next, as ⌊171/144⌋ = 1, we subtract this third row from the second in order
to get the fourth row,

27 −1 3

Continue in this manner until we get 0 in the first column:

d a b
486 1 0
171 0 1
144 1 −2
27 −1 3
9 6 −17
0 −19 54

We claim that, for each row, the triple (d, a, b) satisfies the equality d =
486a + 171b. In particular, the row before the last gives the desired linear
combination, gcd(486, 171) = 9 = 486(6) + 171(−17).

Exercise 1.17. Justify these claims, proving that the algorithm is valid for
any pair (m, n) of nonzero integers.

Exercise 1.18. Continue with Exercise 1.13 and find integers a and b, for
which gcd(m, n) = am + bn.
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Exercise 1.19. Repeat Exercise 1.18, using absolute mod in performing
the Euclidean algorithm. Do we get the same values of a and b?

Bezout’s lemma further leads to a number of ready consequences, blend-
ing together the properties of divisibility and those of gcd. Upon presenting
these, we will be ready to move on to the next section.

Proposition 1.6. Let L be the set of all linear combinations of m and n.

1) L is equal to the set of all multiples of gcd(m, n).

2) gcd(m, n) is the least5 positive element of L.

3) gcd(m, n) = 1 if and only if the number 1 belongs to L.

4) gcd(m, n) = 1 if and only if L is the set of all integers.

Proof. All multiples of gcd(m, n) belong to L, according to Bezout’s lemma.
Conversely, gcd(m, n) divides every element in L, by Proposition 1.1(4).
This proves the first statement, from which follows the rest. ▽

Corollary 1.7. If d | m and d | n, then gcd(m/d, n/d) = gcd(m, n)/d. In
particular, if d = gcd(m, n) then gcd(m/d, n/d) = 1.

Proof. By Proposition 1.6(2) gcd(m/d, n/d) is the least positive linear com-
bination of m/d and n/d, which is 1/d times the least positive linear com-
bination of m and n, which is gcd(m, n)/d. ▽

Exercise 1.20. Prove that if k > 0 then gcd(km, kn) = k gcd(m, n).

Definition. Two integers m and n are said to be relatively prime or coprime

to each other when gcd(m, n) = 1. This is to say that the two have no
common factor larger than 1. Proposition 1.6(4) says that a pair of relatively
prime integers can represent any number as their linear combination.

Theorem 1.8. The following statements hold.

1) If d | mn and gcd(d, m) = 1, then d | n. (Euclid’s Lemma)

2) If c | m and d | m, with gcd(c, d) = 1, then cd | m.

3) If gcd(m, n) = 1 and gcd(m, N) = 1, then gcd(m, nN) = 1.

Proof. 1) Recall that gcd is a linear combination. If gcd(d, m) = 1, then
1 = ad + bm for some integers a and b. Multiplying this by n/d yields
n/d = an + b(mn/d), which is an integer if d | mn.

5So the least shall be the greatest!
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2) Again, gcd(c, d) = 1 implies 1 = ac + bd. This time multiply by m/(cd)
to get m/(cd) = a(m/d) + b(m/c), which is an integer if c | m and d | m.

3) Write 1 = am + bn and 1 = Am + BN , and multiply the two together:

1 = (aAm + aBN + bAn)m + (bB)nN

This last equation displays the number 1 as a linear combination of m
and nN . Hence, gcd(m, nN) = 1 by Proposition 1.6(4). ▽

Euclid’s lemma, namely Theorem 1.8(1), is another simple yet very useful
divisibility fact. Note that the relatively prime condition, gcd(d, m) = 1,
cannot be omitted. Consider for example, 6 | 72 = 8 × 9, where 6 divides
neither 8 nor 9. The same can be said of Theorem 1.8(2) where, for instance,
4 | 60 and 6 | 60, but 4 × 6 = 24 ∤ 60.

Exercise 1.21. Prove the following statements.

a) Every number in the form n3 − n is divisible by 6.
b) If n is odd then n3 − n is divisible by 24.
c) The number 30 divides n5 − n for all integers n.
d) The product of five consecutive integers is a multiple of 120.

1.3 Linear Diophantine Equations

We are now in a position to describe the general solutions of linear equations
in two variables x and y, in the form mx + ny = c. By a solution, of course,
we mean integer solution; and that is the only reason an equation is called
diophantine.

Being a linear combination of m and n, says Proposition 1.6(1), c is
required to be a multiple of gcd(m, n), or else there can be no solution.
Assume therefore, gcd(m, n) | c. We then know how to find a and b, for which
ma + nb = gcd(m, n). This equation, multiplied through by c/ gcd(m, n),
will produce at least one solution for x and y. We give first an example
before proceeding to finding the general solution.

Example. Let us find (x, y) such that 486x + 171y = 36. From the earlier
example on the extended Euclidean algorithm, we have gcd(486, 171) =
9 = 486(6) + 171(−17). We multiply through this equation by 4 to get
486(24) + 171(−68) = 36, thus one solution pair, x = 24 and y = −68.

Exercise 1.22. Find a solution of 34x + 55y = 11.



10 Theory of Numbers

Theorem 1.9 (Linear Equation Theorem). The linear equation mx+ny = c
has a solution if and only if d = gcd(m, n) | c, in which case all its solutions
are given by the pairs (x, y) satisfying

x = x0 −
kn

d
and y = y0 +

km

d

for any particular solution (x0, y0) and for any integer k.

Proof. The necessary and sufficient divisibility condition has already been
explained. Now suppose we have a particular solution (x0, y0). We consider
first the case d = 1. All solutions to the linear equation must lie on the line
passing through (x0, y0) with a slope of −m/n. Another point on this line
will be given by (x0− t, y0 + tm/n) for any real number t. If the coordinates
are to be integers, then by Euclid’s lemma we must have t = kn for some
integer k. Thus the general solution (x0 − kn, y0 + km).

If now d > 1, replace the linear equation by (m/d)x + (n/d)y = c/d.
Doing so will not alter its solution set. But then Corollary 1.7 implies that
gcd(m/d, n/d) = 1 and, repeating the argument for d = 1, we arrive at the
general solution (x0 − kn/d, y0 + km/d). ▽

Exercise 1.23. Prove that gcd(m, n) = 1 if and only if the linear equation
mx + ny = 1 has a solution.

Example. The previous example continues. We have found a particular
solution (x, y) = (24,−68) to the equation 486x + 171y = 36. The general
solution is then given by (24−171k/9, −68+486k/9) = (24−19k, −68+54k)
for any integer k. For instance, k = 1 corresponds to a solution (5,−14) and
k = 2 gives (−14, 40).

Exercise 1.24. Find all the solutions, if any, for each linear equation.

a) 34x + 55y = 11
b) 12x + 25y = 1
c) 24x + 18y = 9
d) 25x + 65y = −5
e) 42x − 28y = 70

Exercise 1.25. Arun made two calls using his OrangeTMmobile—one local
call to a Zain network user, for 7 piasters per minute, and an international
call to Indonesia, for 13 piasters a minute. The total charge was 1 dinar and
54 piasters. For how long did Arun talk in each call?6

6The peculiar company names in this problem are relevant in the kingdom of Jordan,
where 1 dinar is equivalent to 100 piasters.
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1.4 Divisibility Criteria [Project 1]

Without using a calculator, there are relatively quick tests we can perform
to find small factors of a given number. Let’s say, n = 1234567890123456.
The following criteria apply.

1) The number n is divisible by 2, or 5, if and only if its unit digit is,
respectively. In this example, 6 is the unit digit. Hence, 2 | n and 5 ∤ n.

2) The number n is divisible by 3, or 9, if and only if its iterative digit sum

is. In this case, 1+2+3+4+5+6+7+8+9+0+1+2+3+4+5+6 = 66.
Then, 6 + 6 = 12, and 1 + 2 = 3. Thus 3 | n, while 9 ∤ n.

3) For divisibility by 11, similarly, we may replace n by its alternating digit
sum. Here, 1− 2+3− 4+5− 6+7− 8+9− 0+1− 2+3− 4+5− 6 = 2.
Since 11 ∤ 2, then 11 ∤ n.

4) For divisibility by 7 or 13, we work with the alternating sum of consecu-
tive 3-digit blocks. For this example, 1 − 234 + 567 − 890 + 123 − 456 =
−889, divisible by 7 but not 13. We conclude, 7 | n and 13 ∤ n.

Project 1.4.1. Write the proof for each item above, for arbitrary n. Then
try to find similar criteria for divisibility by 4, 8, 10, 25, 37, and 101.

And here is a divisibility-by-17 test. Write n = 10t + u, where u is the
unit digit in n. For instance, if n = 125443 then t = 12544 and u = 3. We
claim that 17 | n if and only if 17 | (t − 5u). With n = 125443, we have

12544 − 5 × 3 = 12529 → 1252 − 5 × 9 = 1207 → 120 − 5 × 7 = 85

Since 17 | 85, we conclude that 17 | 125443. Indeed, 125443 = 17 × 7379.

Project 1.4.2. Prove the divisibility criteria below, where n = 10t + u as
before. Illustrate each one with some fairly large numbers of your choice.

a) 17 | n if and only if 17 | (t − 5u)
b) 19 | n if and only if 19 | (t + 2u)
c) 13 | n if and only if 13 | (t + 4u)
d) 7 | n if and only if 7 | (t − 2u)

Finding a factor of a given integer n will be a recurring theme of this
book. For large and arbitrary n, this problem is not an easy one, even
with the help of modern computing machines. We will encounter more
about factoring methods in the next chapter, including a coming project
(Section 2.4) on this topic.


