Chapter 3

Modular Arithmetic

The theory of congruences is perhaps the reason that elementary number
theory has become a modern systematic discipline as it is studied today.
Congruent numbers, essentially, are those that leave the same remainders
upon division by a fixed integer—the modulus. The congruence relation
behaves much like an equality in ordinary arithmetic, wherein the rules of
addition and multiplication apply. Thus the term modular arithmetic, an
equally proper name for the theory of congruences.

3.1 Congruences and Residue Classes

A congruence relation can be understood from a number of different angles;

the next observation is a precursor to its definition.

Proposition 3.1. The following statements are all equivalent, where n > 0.

1) a%n=0%n

2) n|(a—b)

3) a = b+ nk for some integer k.

Proof. By the definition of residues mod n, statement (1) is the same as
a—[2)n=b=[2]n

Since floor values are all integers, it follows that a — b is a multiple of n, say
a — b = nk for some integer k. That is, a = b + nk. But then

a%n=>b+nk— [%Jn:bJrnkf(L%JJrk)n:bf L%Jn:b%n

Hence the argument has come round, completing the proof. \V4
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Definition. We will say that two integers a and b are congruent modulo
n > 0 if any one of the equivalent statements in Proposition 3.1 holds. In
such a case, we write a = b (mod n). The negation of this relation is denoted,
naturally, by writing a #Z b (mod n).

Ezxample. Let us illustrate this idea with a few examples.

1) We have 13%3 = 1 = 4%3, so we write 13 = 4 (mod 3). Note that
13 — 4 = 9, divisible by 3. It is also true that 31%3 = 1, hence
13 = 31 (mod3) and 4 = 31 (mod3). It is convenient to combine sev-
eral congruences in one compound statement, e.g., 31 = 13 = 4 (mod 3).

2) If a = 3 (mod4) then a € {...,-5,—-1,3,7,11,15,...}. Conversely, any
number of the form a = 4k + 3 satisfies the congruence. (To be en-
countered frequently again, the notation x € S is used to mean that the
element = belongs to the set S.)

3) Since 7 | 42, we have 42 = 0 (mod 7). More generally, a = 0 (modn) if
and only if n | a.

4) For arbitrary even numbers a and b, we have a = b = 0 (mod 2). Whereas
if they are odd, then ¢ = b =1 (mod 2). In general, for any integer a,

a = a%n (modn)

EXERCISE 3.1. Show that if a is odd then a® = 1 (mod 8).

EXERCISE 3.2. Investigate true or false.

a) If a =b(modn) and d | n, then a = b (mod d).

b) If ma = mb(modn) then a = b (modn).

¢) a = b(modn) if and only if ma = mb (mod mn).

d) a =b(modn) if and only if a %% n = b%%n. (See Exercise 1.8.)

EXERCISE 3.3. Show that if a = b (modn) then ged(a,n) = ged(b, n). This
result extends Theorem 1.4, wherein @ = m and b = m %n.

Proposition 3.2. Suppose a = b(modn) and ¢ = d (modn). Then

1) a4+ c=b+d(modn)

2) ac = bd (modn)

3) f(a) = f(b) (modn) for any polynomial f(z) with integer coefficients.

Proof. Simply let a = b+ nk and ¢ = d+ nh for some integers k and h. The
sum a + ¢ = b+ d+ n(k + h) and the product ac = bd + n(bh + kd + nkh)
show why statements (1) and (2) hold. The last statement is an immediate
generalization of these two. \V4
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EXERCISE 3.4. Show that every integer n is congruent to its iterative digit
sum modulo 9. (Recall the divisibility criteria of Section 1.4.) Similarly,
modulo 11, n is congruent to its alternating digit sum.

Proposition 3.2 says that we can perform congruence arithmetic, for a
fixed modulus, similar to that with ordinary addition and multiplication.
For division, however, an added condition is required for in general it does
not apply. For instance, dividing through the congruence 6 = 2 (mod 4) by
2 is not allowed, since 3 # 1 (mod 4).

Proposition 3.3. Suppose that am = bm (modn). If also ged(m,n) = 1,
then a = b (modn).

Proof. If n divides am — bm = (a — b)m and ged(m,n) = 1, then n | (a — b)
according to Euclid’s lemma, i.e., Theorem 1.8(1). \V/

EXERCISE 3.5. Let d = ged(m,n). Prove that am = bm (mod n) if and only
if a = b(modn/d).

Definition. Let n > 0. For every integer a, define its residue class modulo n
to be the set of all integers b for which a = b (modn). We denote this class
by [a]n, or simply [a] when the modulus n is understood from the context.
Sometimes, a residue class is also called a congruence class.

By Proposition 3.1, the elements of [a],, are all given by a + nk, where k
ranges through all the integers. For instance, the class [1]o consists of pre-
cisely the odd numbers. Similarly, [7]y = {...,-9,—5,—-1,3,7,11,15,...}.
In essence, integers which belong together in a residue class enjoy the same
congruence properties, with respect to the same modulus.

Proposition 3.4. For a fixed modulus n > 0, the following assertions hold.

1) For any integer a, the residue class [a], contains both a and a % n. In
particular, a %n is the least nonnegative element of [a]s,.

2) If @ = b(mod n) then [a], = [b],. In particular, [a], = [a % n],.
3) If a # b(modn) then the classes [a],, and [b],, have no element in common.

4) There exist exactly n residue classes modulo n, which can be represented
by [0], [1], [2], ..., [n — 1]. Every integer a belongs to exactly one class,
ie., a€la%mn].

Proof. The first claim follows by Theorem 1.2 and the fact that a and a % n
are both of the form a + nk. Now if a = b(modn), then every integer is
congruent to a if and only if it is to b, hence [a] = [b]. Conversely, any



24 Theory of Numbers

element common to [a] and [b] must be congruent to both a and b, and
so a = b(modn). It follows that every integer can belong to at most one
residue class. Since a € [a%n] and 0 < a%n < n—1, there can be no more
than n residue classes, represented by 0 to n — 1. No two of these have a
difference divisible by n, therefore these n classes are all distinct. \V4

Ezxample. With n = 2, the integers are partitioned into two classes—the
set of even numbers [0]z and the set of odd numbers [1]2. Note that every
integer is either even or odd, but never both. We use the word parity to
denote membership in a residue class modulo 2. For instance, 3 and 10 have
opposite parities, while 8 and 34 are of the same parity.

Similarly, with n = 3, there are 3 classes of integers given by

0], ={...,-12,-9,-6,-3,0,3,6,9,12,...}
[y ={..,~11,-8,-5,-2,1,4,7,10,13,.. .}
2], ={...,-10,-7,-4,-1,2,5,8,11,14,.. .}
Note that the choice of 0 in representing [0]3 is not at all unique, since

[3]s = [0]3, for instance. In fact, any element of a residue class can be
chosen to represent the class, according to Proposition 3.4(2).

EXERCISE 3.6. Prove that any prime in the class [1]3 also belongs to [1].

EXERCISE 3.7. Show that a %% n is an element of [a],, with the least absolute
value. (Absolute residue is defined in Exercise 1.8.)

Definition. A set of n numbers form a complete residue system modulo n
if each one comes from a different residue class modulo n. So, a complete
residue system modulo 3 can be {0, 1,2}, or {1, 2,3}, {0,%1}, {3,7,11}, etc.

EXERCISE 3.8. Find a complete residue system modulo n, consisting of only
prime numbers, whenever possible.

a) n=>5
b) n=26
c)n="7
d) n=11
e) n=12

3.2 Solving Linear Congruences

It will be useful for us next to study linear congruences in the form mx =
¢(modn). Note first that to any congruence f(z) = ¢(modn), where f(x)
is an integral polynomial, z = b is a solution if and only if x = a is too, for
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any a € [b],. This is essentially Proposition 3.2(3). Accordingly, in studying
such a congruence it will suffice to consider only the values of z in a complete
residue system.

For convenient, we will use the term incongruent or distinct solutions
modulo n, refering to solutions which belong to different residue classes.
Similarly, by a unique solution modulo n, we mean a general solution given
by a single residue class, which really contains infinitely many integers!

Back to the linear congruence mz = ¢ (mod n). By the definition of con-
gruence, this problem is equivalent to finding x and k in the linear equation
mx = c+nk, or more familiarly, mx+ny = ¢. Not surprisingly, we conclude
the following result about linear congruences.

Theorem 3.5 (Linear Congruence Theorem). The linear congruence mx =
¢ (modn) has a solution if and only if d = ged(m,n) | ¢, in which case it has
a unique solution modulo n/d, given by x = g (mod n/d) for any particular
solution xg.

Proof. We seek values of z, for which ma 4+ ny = ¢ has a y-solution. The
result then follows directly from the linear equation theorem, which gives
the general solution z = x¢ + k(n/d), i.e., the residue class [2¢],/q4- \V4

Ezample. Consider 15z = 24 (mod 27). We check that ged(15,27) = 3 | 24.
Next we use the extended Euclidean algorithm to find a particular solution.
Omitting details, we get 3 = 15(2) 4+ 27(—1), hence xg = 2 x 8 = 16. The
general solution is therefore x = 16 (mod 9), i.e., the integers in [7]o.

EXERCISE 3.9. Solve each linear congruence.

8x =5 (mod 13)
352 = 7 (mod 49)

a)
; 27z = 1 (mod 209)
)
)

Q.o T

62 = 9 (mod 1023)
193922 = 6666 (mod 29391)

)

One important consequence of Theorem 3.5 is in the concept of modular
inverses, i.e., two integers whose product equals 1 modulo n. In ordinary
arithmetic, no such integers can exist, other than +1.

Definition. If ab =1 (mod n), we say that a and b are inverses of each other
modulo n. We may then write either a = b~! (modn) or b =a~! (mod n).

For example, 3 and 5 are inverses modulo 7, since 3 x 5 = 1(mod 7).
Similarly, the fact that 52% 12 = 1 implies that 5 is its own inverse, or
self-inverse, modulo 12. But not all integers have an inverse, e.g., 6 modulo
10, since the congruence 6z = 1 (mod 10) fails the divisibility condition of
Theorem 3.5. This calls for the next theorem, a corollary.
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Corollary 3.6 (Modular Inverse Theorem). The number a has an inverse
modulo n if and only if ged(a,n) = 1, in which case its inverse is unique
modulo n.

Proof. Simply let m = a and ¢ =1 in the linear congruence theorem. \V4

EXERCISE 3.10. For each pair (a,n), find all integers b = a~! (modn).
a) (2, )
b) (=5
c) (7, 12)
d)
e) (19392 29391)
EXERCISE 3.11. Which integers, from 1 to 12, have an inverse modulo 127

What we have thus far readily leads to a classical theorem of Wilson,
which reveals one distinguishing character of primes. It employs the follow-
ing lemma, which is simple but perhaps more practical than the theorem
itself.

Lemma 3.7. Let p be a prime. If a> = 1 (mod p) then a = 1 (mod p).

Proof. According to Theorem 2.3, if p divides a? — 1 = (a + 1)(a — 1) then
pl(a+1) orp]| (a—1), hence the claim. \V/

As a counter-example, we have 72 = 1 (mod 12), even though 7 belongs
to neither the class [1]12 nor [—1];2. This shows that Lemma 3.7 may not
work, unless with a prime modulus.

EXERCISE 3.12. Prove that if a? = b? (mod p) then a = +b (modp).
Theorem 3.8 (Wilson’s Theorem). If p is prime then (p — 2)!%p = 1.

Proof. Consider the complete residue system {0,1,2,...,p — 1} modulo p.
Upon discarding 0, Corollary 3.6 says that each number in this set has a
unique inverse, also in the set. Moreover, by Lemma 3.7, none of them is
self-inverse, except 1 and p — 1. Hence, the product 2 x 3 x -+ x (p — 2) is
made of pairs of inverses modulo p, and so (p — 2)! = 1 (mod p). \V4

For example, as 101 is prime, 99! % 101 = 1. Wilson’s theorem is better
recognized in another form: If p is prime then (p — 1)! = —1 (mod p). This
congruence never holds for composite modulus. (See Exercise 3.14.) Hence,
Wilson’s theorem is our second primality criterion, after trial division, for
determining whether a given integer is prime or composite. The enormous
task of computing factorials, unfortunately, makes it of no practical value.

EXERCISE 3.13. Evaluate 34! % 37.
EXERCISE 3.14. Prove that (n — 1)! = —1 (modn) if and only if n is prime.
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3.3 Chinese Remainder Theorem

The Chinese remainder theorem is a very important principle that applies to
a pair of congruences with relatively prime moduli. This principle is so basic
that it has appeared in many different forms and levels of generalization in
abstract settings of higher algebra. We present the theorem in two most
common forms and their extensions to a general system of congruences.

Theorem 3.9 (Chinese Remainder Theorem, First Form). Let ged(m,n) =
1. Then a = b(mod mn) if and only if a = b (modm) and a = b (modn).

Proof. Necessity is trivial, by Proposition 1.1(3). To show sufficiency, note
that if both m and n divide (a — b) then, by Theorem 1.8(2), mn | (a — b),
since ged(m,n) = 1. \V/

Ezample. Consider x = 5 (mod 12), whose solution set is given by the class
[6li12 =4...,—19,-7,5,17,29,...}. According to Theorem 3.9, this congru-
ence can be replaced by the system of two congruences, x = 5 = 2 (mod 3)
and £ =5 = 1 (mod 4), each of which has its solution set, respectively,

[2}3 = {...,-19,-16,-13,-10,-7,—4,-1,2,5,8,11,14,17,20, ...}
n, = {..,-23,-19,-15,-11,-7,-3,1,5,9,13,17,21,25,29, ...}

Note that [5]12 consists of precisely those elements common to [2]3 and [1]4.
EXERCISE 3.15. Show that a®' = a (mod 77) for any integer a.

EXERCISE 3.16. Suppose that a = b (modm) and a = b (mod n). Prove that
a = b(modlem(m,n)). (See Exercise 2.10 for definition.)

EXERCISE 3.17. Prove that both the numbers p and ¢ = p + 2 are prime
if and only if 4(p — 1)! = —p — 4 (mod pq). This result is an analogue of
Wilson’s theorem for twin primes. (See Section 2.3 for definition.)

Theorem 3.10 (Chinese Remainder Theorem, Second Form). Suppose that
ged(m,n) = 1. Then the two congruences = ¢ (modm) and x = d (mod n)
have a unique common solution modulo mn.

Proof. Solutions of x = ¢(modm) are of the form ¢+ mk, for any integer
k. We want a value of k which also satisfies ¢ + mk = d (mod n), i.e., mk =
d—c(modn). Since gecd(m,n) = 1, by Theorem 3.5, such an integer &, hence
a common solution, exists. But any two solutions z; and xo must satisfy
1 = ¢ = x9 (modm) and z1 = d = x2 (mod n), so that 1 = x5 (mod mn)
by Theorem 3.9, proving uniqueness. \V4
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Note that the proof relies upon Theorem 3.9 to show uniqueness, not ex-
istence. Conversely, the uniqueness of a solution modulo mn can be used to
establish Theorem 3.9, showing the equivalence between the two theorems.

EXERCISE 3.18. Carefully prove that Theorems 3.9 and 3.10 are indeed
equivalent.

Ezample. Let us solve the congruences z = 2 (mod3) and x = 1 (mod4)
simultaneously. The first one implies that * = 2 4 3k, for any integer k.
Now set 2 + 3k = 1(mod4), or 3k = —1 (mod 4). By inspection, k = 1 is
a good choice, hence = 5 is a common solution. By Theorem 3.10, the
general solution is given by the residue class [5];2. Refering to the previous
example, this result confirms that the common intersection between the
classes [2]5 and [1]4 is indeed the class [5]12.

EXERCISE 3.19. Follow the example for each system of congruences below.

a) ¢ =1(mod?2), x =2 (mod3)

b) a:_l(mon), =2 (mod3), z = 3 (mod5)
c) x=7(mod4), z = -2 (mod7)

d) 2 =5(mod8), z =7 (mod11)

EXERCISE 3.20. Maram had a little more than 3 dinars left in her mobile
phone prepaid account. Had she used it up for sending text messages, (to
her pal in Hong Kong) for 6 piasters each, 1 piaster would have been left.
Maram decided to call him instead, 13 piasters per minute, until her credit
ran out. Now only 5 piasters remained. How much credit exactly did Maram
have before she made the call? Assume that 1 dinar is equivalent to 100
piasters.

Definition. Recall that two integers are said to be relatively prime when
they have no common divisor larger than 1. Now, three or more integers are
called pairwise relatively prime if they are relatively prime one to another.

For instance, the numbers 8, 11, 15 are pairwise relatively prime, since
ged(8,11) = ged(8,15) = ged(11,15) = 1. Note that it is not enough to
simply have three numbers with 1 as the largest divisor common to all. For
a counter-example, we have ged(6,10,15) = 1, and yet no two of these three
numbers are relatively prime.!

The following result generalizes Theorem 3.10 to three or more pairwise
relatively prime moduli.

Theorem 3.11 (Chinese Remainder Theorem, General Form). The system
of k congruences © = ¢; (modn;), where the moduli nj, no, ..., ng are

1See Exercise A.3 of the appendix for a proper definition of the ged of three integers.
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pairwise relatively prime, has a unique solution modulo N = njng - - - ng.
Explicitly, the solution is given by

i xx(i)l (mod N)

where each inverse (N/n;)~! is understood modulo n;.

Proof. We have ¢;(N/n;)(N/n;)~! = ¢; (mod n;) for each i, hence the given
formula does satisfy the system, as long as each modular inverse actually
exists. It suffices to verify that ged(n;, N/n;) = 1. This follows since N/n; is
the product of integers relatively prime to n;, hence itself is relatively prime
to n;, by repeated use of Theorem 1.8(3).

As for uniqueness, Theorem 3.10 takes care of the case k = 2, while the
rest follows by way of induction, noting that ged(ning -« -ng_1,n5) = 1. v

Ezample. Consider the system of three congruences: z = 2 (mod3), z =
1(mod4), and z = 3 (mod5). That 3, 4, 5 are pairwise relatively prime is
quickly verified, thus a unique solution modulo 3 x4 x 5 = 60. The modular
inverses can be obtained via the extended Euclidean algorithm, or just by
inspection:

(4x5)71 =2 (mod3)
(3x5)7' =3 (mod4)
(3x4)7' =3 (mod5)

By the given formula, z = (2)(20)(2)+(1)(15)(3)+(3)(12)(3) = 233 (mod 60)
yields the general solution, i.e., the residue class [—7]g0.

EXERCISE 3.21. Solve each system of congruences given below.

a) z=1(mod2), z=2(mod3), z =3 (mod5)
b) x =3 (mod4), z =2 (mod5), z =5 (mod7)
¢) *=1(mod9), x =2 (mod10), z = 3 (mod 11)
d) 2 =1(mod2), z =2(mod3), x =1 (mod5), x =2 (mod7)
e)  =2(modb), z =1(mod8), x =7 (mod9), z = -3 (mod 11)

To conclude, Theorem 3.11 may be rewritten in another form that re-
sembles Theorem 3.9. We will leave the proof as an easy exercise. In the
future, we will simply refer to the name Chinese remainder theorem with
regard to any of the four theorems, 3.9, 3.10, 3.11, and 3.12.

Theorem 3.12 (Chinese Remainder Theorem, General Form). Suppose
that ni, no, ..., ng are pairwise relatively prime positive integers whose
product equals N. Then a = b(mod N) if and only if a = b(modn;) for
1<:< k.
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EXERCISE 3.22. Show that Theorems 3.11 and 3.12 are equivalent.

EXERCISE 3.23. Find the smallest positive integer x such that © %7 = 6,
%11 =10, and 2 % 13 = 12.

3.4 Sums of Two Squares [Project 3]

Recall that Theorem 2.9 gives a necessary and sufficient condition for n =
[1p;" to be representable as a sum of two squares, i.e., the exponent e; must
be even whenever p; = 3 (mod 4).

PROJECT 3.4.1. Prove Theorem 2.9, in the succession of the following claims.
1) (2® +y*) (X +Y?) = (X +yY)? + (2Y —yX)?

2) Suppose that 22 +y? = rp, for some integer r in the range 2 < r < p—1.
Let X = 2%%r and Y =y %% r. Then

X +yY\?  [zY —yX\?
() (7 -

with 1 < R < r. It follows that p is itself a sum of two squares.

3) If p%4 =1, then x = % l'is a particular solution to 22 = —1 (modp).

4) If p%4 =1 then p is a sum of two squares, and conversely.
5) If p%4 =3 and p|n=2a%+y>? then p|x and p |y, hence p? | n.

Expressions like 22 + 32 and 22 — 232 are examples of a quadratic form,
i.e., a multi-variable polynomial each of whose terms has degree two. There
was a long period of time when representations of quadratic forms dominated
the research areas in the theory of numbers.

ProJECT 3.4.2. If you feel challenged, try to complete the following proof
that every positive integer is a sum of four squares, due to Lagrange. Thanks
to Euler, we have

(222 w?) (X2 Y2+ 22 W2 =
(X +yY +2Z +wW)? + (2Y —yX — 2W +wZ)* +
(xZ +yW — 2X —wY)? + (aW —yZ + 2Y —wX)?
so it suffices to prove that every prime p is a sum of four squares. First,
establish the four-variable analogue of step (2) above, and next show that

2?2 = —1 — y? (mod p) has a solution by observing that each side takes on
(p+ 1)/2 distinct values over a complete residue system modulo p.



