
Chapter 4

Exponentiation

Modular exponentiation, e.g., the operation ak % n, often plays a major part
in modern practice of cryptographical procedures. Topics such as the RSA
cryptosystem (Section 4.3) have only recently—some twenty years ago—
become almost a standard motivational chapter in a typical number theory
course. On the theoretical side, modular exponentiation begins with an
elegant theorem of Fermat and its generalization by Euler.

4.1 Fermat’s Theorem and Euler’s Function

Recall that a complete residue system modulo n is a set of representatives
of the residue classes modulo n, exactly one number for each class. The
following lemma will lead to the theorem of Fermat.

Lemma 4.1. Assume that gcd(a, n) = 1. Then {r1, r2, . . . , rn} is a complete
residue system modulo n if and only if {ar1, ar2, . . . , arn} is also a complete
residue system modulo n.

Proof. By Proposition 3.3, arj ≡ ark (modn) implies rj ≡ rk (modn), since
gcd(a, n) = 1. In that case, {ar1, ar2, . . . , arn} represents distinct congru-
ence classes modulo n if and only if {r1, r2, . . . , rn} also represents distinct
congruence classes modulo n. ▽

Example. We illustrate Lemma 4.1 using a = 4 and n = 9. Note that
gcd(4, 9) = 1. Multiply by 4 each number in {0, 1, 2, 3, 4, 5, 6, 7, 8}, which is a
complete residue system modulo 9. We obtain {0, 4, 8, 12, 16, 20, 24, 28, 32}.
We check this finding by taking residues mod 9, keeping the same order, and
get {0, 4, 8, 3, 7, 2, 6, 1, 5}. It is again a complete residue system.
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Theorem 4.2 (Fermat’s Little Theorem1). If p ∤ a then ap−1 ≡ 1 (mod p),
where p is any prime number.

Proof. By Lemma 4.1, the numbers 0, a, 2a, . . . , (p − 1)a form a complete
residue system modulo p, hence their residues mod p are 0, 1, 2, . . . , p− 1,
but not necessarily in this order. Leaving 0 out, these two groups of numbers
make up the following congruence.

a × 2a × · · · × (p − 1)a ≡ 1 × 2 × · · · × (p − 1) (mod p)

Wilson’s theorem gives us −ap−1 ≡ −1 (mod p), thus the result. ▽

For example, with prime p = 101 and a = 2, we have 2100 % 101 = 1.
Beware, however, sometimes a composite may behave likewise, for instance
2934 ≡ 1 (mod 35). Hence, unlike Wilson’s theorem, Fermat’s little theorem
is not a primality criterion. Nevertheless, Theorem 4.2 is still the basis for
many modern primality testing algorithms, some of which we will see in
Section 9.1.

Exercise 4.1. Investigate true or false.

a) If an ≡ a (modn) then n is a prime.
b) If an 6≡ a (modn) then n is composite.
c) If a ≡ b (modn) then ak ≡ bk (modn).
d) If j ≡ k (modn) then aj ≡ ak (modn).

Exercise 4.2. Show that Fermat’s little theorem can well be rephrased as
follows. If p is a prime, then ap ≡ a (mod p) for any integer a.

We aim next to find a congruence property similar to that in Theo-
rem 4.2, but for composite moduli. The first step in that direction is the
introduction of the phi function, due to Euler.

Definition. The Euler phi function φ(n) is the number of positive integers
up to n which are relatively prime to n. For example, in the range from 1
to 12, only 1, 5, 7, and 11 are relatively prime to 12. Therefore φ(12) = 4.
Similarly, φ(11) = 10.

Exercise 4.3. Evaluate φ(n) for the following values of n.

a) n = 13
b) n = 14
c) n = 15
d) n = 16

1Little, in comparison to his bigger, then unproved last theorem, which states that the
diophantine equation xn + yn = zn has no nontrivial solution for n ≥ 3.
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Exercise 4.4. Show that φ(p) = p − 1 for any prime p. Conversely, prove
that only prime numbers can satisfy the property φ(n) = n − 1.

Note that in any complete residue system modulo n, the number of
elements which are relatively prime to n is invariably φ(n). This fact is a
consequence of Theorem 1.4, and it allows us to give the next definition.

Definition. A reduced residue system modulo n is a subset of a complete
residue system modulo n, consisting of the φ(n) numbers relatively prime to
n. For example, a reduced residue system modulo 9 could be {1, 2, 4, 5, 7, 8},
or {±1,±2,±4}, or another, but each one will have φ(9) = 6 elements.

Exercise 4.5. Find a reduced residue system modulo n, consisting of only
prime numbers—Theorem 2.8 foresees infinitely many such systems.

a) n = 12
b) n = 13
c) n = 14
d) n = 15
e) n = 24

One more lemma and we are ready to prove Euler’s theorem, which gen-
eralizes Fermat’s little theorem to arbitrary moduli, not necessarily prime.

Lemma 4.3. Suppose that gcd(a, n) = 1. Then {r1, r2, . . . , rφ(n)} is a
reduced residue system modulo n if and only if {ar1, ar2, . . . , arφ(n)} is also
a reduced residue system modulo n.

Proof. As in the proof of Lemma 4.1, either both sets represent distinct
congruence classes or neither does, says Proposition 3.3. Moreover, by The-
orem 1.8(3), gcd(ri, n) = 1 if and only if gcd(ari, n) = 1. This establishes
the claim. ▽

Example. Let us take {1, 2, 4, 5, 7, 8} as a reduced residue system modulo 9.
Multiplying each number by 4 results in {4, 8, 16, 20, 28, 32} with residues
mod 9, in this order, {4, 8, 7, 2, 1, 5}. Hence, we get another reduced residue
system modulo 9. Note the fact that gcd(4, 9) = 1.

Theorem 4.4 (Euler’s Theorem). If gcd(a, n) = 1 then aφ(n) ≡ 1 (mod n),
for any positive integer n.

Proof. If gcd(a, n) = 1 then by Lemma 4.3, we may choose a reduced
residue system modulo n which looks like {r1, r2, . . . , rφ(n)}, and another
one, {ar1, ar2, . . . , arφ(n)}. These elements form the following congruence.

aφ(n)r1r2 · · · rφ(n) ≡ r1r2 · · · rφ(n) (modn)

Then simply cancel the ri’s off both sides, as allowed by Proposition 3.3. ▽
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Note that when n is a prime number, Euler’s theorem and Fermat’s
little theorem coincide. Also, the structures of the two proofs are so similar
that some lecturers would rather present Euler’s theorem first before stating
Fermat’s little theorem as a direct corollary.

Exercise 4.6. If ak ≡ 1 (mod n) for some k > 0, show that gcd(a, n) = 1.

For practical purposes, Euler’s theorem is not of much use until we learn
a more feasible way to evaluate φ(n). We devote the rest of the section
solely with this goal in mind.

Theorem 4.5. If gcd(m, n) = 1 then φ(mn) = φ(m)φ(n).

Proof. Let M , N , and MN be reduced residue systems modulo m, n, and
mn, respectively. Also denote by M × N the set consisting of the elements
(c, d) with c ∈ M and d ∈ N . We shall provide a one-to-one correspondence
between M × N and MN , thereby showing that φ(m)φ(n) = φ(mn).

Pick an element a ∈ MN . We have gcd(a, mn) = 1, thus gcd(a, m) = 1
and gcd(a, n) = 1. Since M and N are reduced residue systems, there exists
a unique pair (c, d) ∈ M × N such that a ≡ c (modm) and a ≡ d (modn).
Conversely, given a pair of congruences x ≡ c (modm) and x ≡ d (modn)
with (c, d) ∈ M × N , by the Chinese remainder theorem (Theorem 3.10),
x = a is the unique element in MN which solves the system. This establishes
the one-to-one correspondence between the two sets. ▽

As a consequence of Theorem 4.5, we are now able to evaluate φ(n) with
ease, provided that the factorization of n has been established.2

Proposition 4.6. If n factors into prime powers, written n =
∏

pei

i , then

φ(n) =
∏

φ(pei

i ) =
∏

(pei

i − pei−1
i ) =

∏

pei−1
i (pi − 1)

Proof. Theorem 4.5 permits us to prove only that φ(pe) = pe−pe−1. Simply
recall that φ(pe) is the number of integers from 1 to pe which are relatively
prime to pe. Since p is the only prime divisor of pe, then φ(pe) equals pe

minus the number of multiples of p. And the multiples of p are p, 2p, 3p, . . . ,
up to (pe−1)p—exactly pe−1 of them. ▽

Example. To evaluate φ(600), we first factor 600 = 23 × 3× 52, and then we
apply Proposition 4.6.

φ(600) = φ(23)φ(3)φ(52) = (23 − 22)(3 − 1)(52 − 5) = 4 × 2 × 20 = 160

2But yes, we did say that factoring is slow. . .
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Exercise 4.7. Evaluate φ(n) for the following values of n.

a) n = 240
b) n = 625
c) n = 1024
d) n = 4800
e) n = 19392

Exercise 4.8. Find all positive integers n, such that φ(n) = 4.

Exercise 4.9. Prove the following facts about φ(n).

a) If n is odd then φ(2n) = φ(n).
b) If n is even then φ(2n) = 2φ(n).
c) If n > 2 then φ(n) is even.
d) If d | n then φ(d) | φ(n).

Exercise 4.10. Another property of the phi function is that
∑

φ(d) = n,
where the sum is taken over the range 1 ≤ d ≤ n such that d | n. Prove it.

4.2 Computing Large Powers

In cryptographical applications, we mentioned earlier, it is often necessary
to perform the exponentiation ak % n, and that with a very large value of k.
One obvious way to compute ak is multiplying a by itself k times, where the
partial product in each step can be reduced mod n in order to keep the size
small—doing so will have no effect on the final answer, and the following
exercise asks for its justification.

Exercise 4.11. Show that a2 % n = (a% n)2 % n. More generally, prove
that ab% n = (a% n)(b % n) % n.

Moreover, it can be assumed that a < n, since ak % n = (a % n)k % n.
If φ(n) is known, or easily computed, and if gcd(a, n) = 1, then by Euler’s
theorem we have ak % n = 1 whenever φ(n) | k. More generally, for arbitrary
k, we have

ak % n = ak % φ(n) % n

For small values of n, this knowledge may come in handy.3

Example. Say, we have to compute 12345678 % 11. We note that 1234 % 11 =
2, relatively prime to 11. Also, φ(11) = 10 and 5678% 10 = 8. Therefore,
12345678 % 11 = 28 % 11 = 256 % 11 = 3.

Exercise 4.12. Compute these residues with the help of Euler’s theorem.
3To do with ak % n, reduce the base a mod n and the power k mod φ(n).
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a) 833418 % 24
b) 492324 % 41
c) 33373331 % 64
d) 22342600 % 97
e) 32943845 % 143

Exercise 4.13. Find the unit digit upon computing 12345678.

Euler’s theorem does not apply, however, when gcd(a, n) > 1. Besides,
evaluating φ(n) involves factoring, which we would rather avoid. This will
not matter anyhow once we have learned the so-called successive squaring

algorithm. The idea is based on the fact that every positive integer is the
sum of powers of two.

Exercise 4.14. For k ≥ 0, show that there is a unique way to write k =
∑

i≥0 bi × 2i, where bi ∈ {0, 1}. In particular, bi = 0 for all i > log2 k.

Not only does successive squaring reduce computation time significantly,4

but this algorithm also works regardless of gcd(a, n). To understand succes-
sive squaring algorithm, when you’ve seen one example, you’ve seen them
all.

Example (Successive Squaring Algorithm). Compute 23106 % 97. We have
106 = 64+32+8+2 = 26+25+23+21, and so 23106 = 2364×2332×238×232.
In the next step we successively square the base number 23, thus the name.

232 % 97 = 44

234 % 97 = 442 % 97 = 93

238 % 97 = 932 % 97 = 16

2316 % 97 = 162 % 97 = 62

2332 % 97 = 622 % 97 = 61

2364 % 97 = 612 % 97 = 35

Hence, 23106 % 97 = (35 × 61 × 16 × 44) %97 = 25.

Exercise 4.15. Use successive squaring to compute these residues.

a) 357 % 20
b) 2599 % 79
c) 47250 % 200
d) 51434 % 307
e) 251434 % 309

4It uses only O(log k) instead of k multiplications.
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Exercise 4.16. Find the two right-most digits of the number 12345678.

Concluding this section, we will next, for merely theoretical amusement,
investigate to what extent Euler’s theorem fails when gcd(a, n) > 1.5

Let a and n be arbitrary positive integers. Set n0 = n and d0 = gcd(a, n).
Then for k ≥ 1, we define nk and dk recursively by

nk =
nk−1

dk−1
and dk = gcd(a, nk)

It is an easy exercise to show that both sequences, nk and dk, are strictly
decreasing with nk+1 | nk and dk+1 | dk, until they become stationary when
dk = 1. Let L be the least integer for which dL = 1. The following result
can be viewed as an extension of Euler’s theorem.

Theorem 4.7. Let a and n be arbitrary positive integers with nk, dk, and
L defined as above. Then the first repeated term in the sequence {ak % n}
occurs at k = L. Moreover,

aφ(nL)aL ≡ aL (modn)

with which Euler’s theorem coincides in the case L = 0.

Proof. Suppose that ai ≡ aj (modn) with i > j. This is equivalent, through
division by d0, to the congruence ai/d0 ≡ aj/d0 (modn1). Corollary 1.7 tells
us that gcd(a/d0, n1) = 1, hence by Proposition 3.3, the congruence is again
equivalent to ai−1 ≡ aj−1 (modn1). Repeat this process of substitutions j
times, and we arrive at ai−j ≡ 1 (mod nj). For one thing, this implies that
gcd(a, nj) = 1, thus j ≥ L. In particular, with i = φ(nL) + L and j = L,
the congruence aφ(nL)aL ≡ aL (modn) is equivalent to aφ(nL) ≡ 1 (modnL),
which holds because of Euler’s theorem. ▽

Example. We illustrate with a = 23 × 32 × 5 and n = 27 × 3 × 52 × 7,

n0 = n = 27 × 3 × 52 × 7 d0 = gcd(a, n0) = 23 × 3 × 5

n1 = n0/d0 = 24 × 5 × 7 d1 = gcd(a, n1) = 23 × 5

n2 = n1/d1 = 2 × 7 d2 = gcd(a, n2) = 2

n3 = n2/d2 = 7 d3 = gcd(a, n3) = 1

Meanwhile, the sequence ak % n generates the following numbers.

360, 62400, 19200, 57600, 38400, 48000, 9600, 28800, 19200, . . .

5The uninterested reader may instead skip forward to the next section, or even to the
next chapter, without violating the logical chronology of the text.
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Note that a3 % n = 19200 is the first repeated term, which corresponds to
L = 3. Moreover, that φ(n3) = φ(7) = 6 is reflected in the fact that beyond
the third term, the sequence repeats itself every six terms. In general, how-
ever, the length of the periodicity will be a divisor of φ(nL), not necessarily
equal to it.

Suppose, for instance, we further wish to compute a8888 % n. Although
8888 %6 = 2, here we have a8888 6≡ a2 (modn) since 2 < L. Instead, we
have a8888 = a8885a3 ≡ a5a3 = a8 (modn). That is, 28888 % n = 28800.

Exercise 4.17. Compute these residues following the above example.

a) 2456 % 10
b) 10456 % 36
c) 42654 % 88
d) 1269999 % 432
e) 3853422 % 900

Exercise 4.18. Writing n =
∏

pei

i and a =
∏

pfi

i with ei, fi ≥ 0, show that

nL =
∏

pi∤a

pei

i and L = max
fi 6=0

⌈

ei

fi

⌉

(See Exercises 1.5 and 2.10 for the ceiling and max notation, respectively.)

Corollary 4.8. If n has no repeated prime factors, then aφ(n)a ≡ a (modn).

Proof. The condition implies that L ≤ 1. Either L = 0, which is trivially
Euler’s theorem, or L = 1 and aφ(n1)a ≡ a (modn). But φ(n1) | φ(n) since
n1 | n, (Exercise 4.9(d)) thus the result. ▽

Exercise 4.19. Prove Corollary 4.8 again without relying on Theorem 4.7,
this time using the Chinese remainder theorem.

4.3 The RSA Cryptosystem

If, instead of computing ak % n, we are given its value and asked to retrieve
a, then what we are facing is the more difficult problem of modular root
extraction. Under some relatively prime conditions, the problem is not
difficult to solve, at least theoretically. The following result is in fact a
key principle employed in the RSA cryptosystem, soon to be introduced.

Theorem 4.9. If both gcd(s, n) and gcd(e, φ(n)) equal 1, then the congru-
ence xe ≡ s (modn) has a unique root modulo n given by x ≡ sd (modn),
where d ≡ e−1 (modφ(n)).
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Proof. We will prove that the two congruences modulo n are equivalent.
Modular inverse theorem (Corollary 3.6) guarantees the existence, as well
as uniqueness, of d modulo φ(n). For one and any such d, say de = 1+φ(n)h
for some integer h, the congruence x ≡ sd (modn) implies

xe ≡ sde = s1+φ(n)h = s(sφ(n))h ≡ s (modn)

by way of Euler’s theorem. Conversely, the congruence xe ≡ s (modn),
when raised to the power d, will give back x ≡ sd (modn). ▽

Exercise 4.20. Solve for x.

a) x7 ≡ 12 (mod 13)
b) x13 ≡ 5 (mod 32)
c) x39 ≡ 5 (mod 121)
d) x121 ≡ 30 (mod 899)
e) x239 ≡ 23 (mod 2005)

Now sensitive messages, when transfered over electronic media such as
the internet, may need to be encrypted, i.e., changed into a secret code
in such a way that only the intended receiver who has the secret key is
able to decrypt it. It is common that alphabetical characters are converted
numerically, for instance according to their ASCII values, before they are
encrypted. Hence, the coded message can be treated as integer strings.

For this purpose, the RSA cryptosystem6 provides an encryption and
decryption algorithm which is widely employed today. In practice, the en-
cryption key may be made public, and doing so will not risk the security
of the system. This feature is a characteristic of the so-called public-key

cryptosystem.

How does it work? Let’s say, the two communicating parties are rep-
resented by Alia and Bob. Alia selects two distinct primes p and q which
are very large, perhaps of a hundred digits each. She computes n = pq
and φ(n) = (p − 1)(q − 1). Next Alia determines a number e, less than
and relatively prime to φ(n), which will serve as her encryption key. As
for her decryption key, Alia computes the number d < φ(n), which satisfies
de % φ(n) = 1.

When all is ready, Alia gives to Bob the pair (n, e) and keeps the rest
secret. In the future, whenever Bob wants to send a message (integer) m < n
to Alia, he encrypts m to s = me % n, and sends s instead. Upon receiving
s, Alia is able to retrieve m, knowing that sd % n = m by Theorem 4.9.

Why does this work? First of all, there are plenty of primes 100-digits
long. In fact there are π(10100)− π(1099) such primes, roughly 3.9× 1097 of

6Named after Rivest, Shamir, and Adleman, who patented it in 1983.
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them, and they are not too hard to find using primality testing algorithms
available today. Secondly, determining e or d is not too hard for Alia with
the help of the Euclidean algorithm. Neither it is hard for Bob to encrypt
s = me % n, nor for Alia to decrypt sd % n = m, using successive squaring
algorithm.

But what if a bad guy, represented by Cobra, intercepts the secret mes-
sage s, together with e and n? Well, d is yet to be found in order to read
the message and for that, the factors p and q will be needed in computing
φ(n). Woe to him, n has over 200 digits, and factoring a large integer this
size will take a lifetime on today’s fastest computer!

Example. By way of illustration, Alia chooses n = 19 × 53 = 1007, where
φ(n) = 18 × 52 = 936. She also selects her encryption key e = 5, which is
relatively prime to 936. After working it out shortly using the extended Eu-
clidean algorithm, Alia finds the inverse, d = 749, to be the right decryption
key, checking it again that (749 × 5) %936 = 1. Then she proceeds to send
n = 1007 and e = 5 to Bob, say, via email.

Later, Bob wishes to send the message SOS to Alia. Using a very naive
ASCII substitutions, i.e., 65 = A, 66 = B, . . . , 90 = Z, the intended message
is coded as 837983. To make m < 1007, Bob cuts up this string into blocks
of 3 digits, in this case, 837; 983. He then sends to Alia the two values of s,
in this order,

8375 % 1007 = 970 and 9835 % 1007 = 732

Whereas, upon receiving, Alia decrypts these two numbers,

970749 % 1007 = 837 and 732749 % 1007 = 983

At last, Alia reunites these results back into a single string and reverses the
ASCII conversion, to be able to read the urgent message from Bob.

In real practice, of course, n is a much larger integer.

Exercise 4.21. In this RSA exercise, Alia picks n = 127× 79 = 10033 and
e = 17.
a) What is her decryption key d?
b) Wanting to say HI, what does Bob send to her?
c) Verify that Alia does get this greeting correctly.
d) Another time she receives s = 8411. What is the intended message?

Theorem 4.9 assumes, in the context of RSA, that gcd(s, n) = 1. In
practice, however, the encrypted message s may fail to be relatively prime
to n, although the probability of such coincidence is extremely small as n
is a very large number with only two prime factors. Nevertheless, as an
exercise we can prove that the decryption algorithm will anyhow return the
correct message m.
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Exercise 4.22. Suppose that gcd(s, n) > 1. Show that anyway sd % n = m.

RSA works under a crucial assumption that it is hard to evaluate φ(n)
without factoring n. Knowing p and q, of course, gives φ(n) = (p−1)(q−1).
Conversely, knowing φ(n) will easily lead to the discovery of p and q, since
they are the two zeros of the quadratic polynomial

x2−(n−φ(n)+1)x+n = x2−(pq−(p−1)(q−1)+1)x+pq = (x−p)(x−q)

We can then say that evaluating φ(n) is no less difficult than factoring n.

Example. Suppose n = 1007 and φ(n) = 936, as before. Knowing only
these two values, we look for the zeros of x2 − (1007 − 936 + 1)x + 1007 =
x2 − 72x + 1007, via the familiar quadratic formula,

x =
72 ±

√
722 − 4 × 1007

2
= 36 ±

√
1156

2
= 36 ± 17

Thus, we rediscover, 1007 = (36 + 17)(36 − 17) = 53 × 19.

Exercise 4.23. Given n = pq and φ(n), find p and q.

a) φ(209) = 180
b) φ(2231) = 2112
c) φ(11371) = 11152
d) φ(147911) = 147000

The RSA Laboratories used to post a list of factoring challenge at their
site http://www.rsa.com/rsalabs/. One of the challenge numbers was the
following 232-digit composite, labeled RSA-768, which was worth US$50,000
before the offer expired in 2007.

n = 12301866845301177551304949583849627207728535695953
34792197322452151726400507263657518745202199786469
38995647494277406384592519255732630345373154826850
79170261221429134616704292143116022212404792747377
94080665351419597459856902143413

Exercise 4.24. In the context of RSA, suppose n = 51983. Find p and q,
knowing that they are a pair of twin primes. (See Section 2.3 for definition.)

Exercise 4.25. Two companies are implementing RSA with n1 = 30227
and n2 = 35657, respectively. Suppose Cobra knows that they are sharing
a common prime factor. How can he quickly factor both numbers?

Exercise 4.26. Still on RSA, suppose n = 1520041, given that p and q are
quite close together. Find them using a factoring technique most suitable
for this case.



42 Theory of Numbers

4.4 RSA Cycling Attack [Project 4]

Alia announces her RSA public key, n = 299 and e = 17. When Bob sends
her the message s = 4117 % 299 = 123, Cobra intercepts it. Aware that
factoring n is almost impossible, Cobra computes successive powering with
the exponent e, starting with base s, as follows.

12317 % 299 = 197 → 19717 % 299 = 6

→ 617 % 299 = 288 → 28817 % 299 = 32

→ 3217 % 299 = 210 → 21017 % 299 = 292

→ 29217 % 299 = 119 → 11917 % 299 = 71

→ 7117 % 299 = 41 → 4117 % 299 = 123 = s

From the last result, Cobra correctly concludes that m = 41.
Over the years, there have been various attempts to break the RSA

cryptosystem. While none of these attacks is a serious blow to the system in
general so far, a vast amount of research has also been done to study certain
circumstances under which a specific implementation of the RSA becomes
vulnerable. The above algorithm is one particular instance, which is given
the name cycling attack. Fortunately, not for Cobra, this scheme is generally
too slow to be effective.

Project 4.4.1. Repeat the above example with n = 3161 and e = 3. Use
your own choice of m, and verify that Cobra does get it right again. Then
prove that this algorithm always works and, in particular, that it returns
the correct value of m.

Project 4.4.2. Attacks on the RSA cryptosystem is a subject of its own.
Write a report paper on selected topics in this area. You may opt to include
the cycling attack and provide some preventive ways to make the system
immune to it.


