PHILADELPHIA UNIVERSITY

DEPARTMENT OF BASIC SCIENCES

Final Exam

Abstract Algebra 1

26-01-2009

Choose any 5 problems from the following 10 problems.

- 1. Let $G = \{x \in R \mid x \neq -1\}$. Prove that G is a group under the operation \star , where $a \star b = a + b + ab$.
- 2. Draw the subgroup lattice for the group U_{13} .
- 3. Let H be a subgroup of a group G. If [G:H]=2, prove that H is normal.
- 4. Suppose that $\theta: G \to H$ is a group homomorphism. If $a \in G$, prove that $|\theta(a)|$ divides |a|.
- 5. Let N be a normal subgroup of G. Prove that the factor group G/N is abelian if and only if $aba^{-1}b^{-1} \in N$ for all $a, b \in G$.
- 6. Suppose that G is a group which is isomorphic to another group H. Show that G is cyclic if and only if H is cyclic.
- 7. Let G be a group of order 3. Show that $G \approx Z_{18}/\langle 3 \rangle$.
- 8. Draw the multiplication table for the group S_3 . Is S_3 cyclic? Why or why not?
- 9. The subgroup $N = \langle (1,3)(2,4) \rangle$ is normal in D_4 . Draw the multiplication table for the factor group D_4/N .
- 10. In the group D_n , show that the composition of a rotation with a reflection is a reflection.

Notes:

- 1. Full credit will only be given to a solution which is logically correct. Be very careful in what you write!
- 2. You may assume all the theorems given in the notes, unless when the problem asks you to prove the theorem.
- 3. Do not spend too much time on a single problem. Read the entire set of problems first; mark the ones you know how to solve and cross out the ones you don't.
- 4. Do exactly five problems. No bonus points will be given to a sixth solution and beyond. If you have extra time, double check your work.