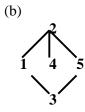
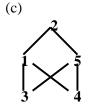
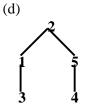

Discrete Structures Final Exam: 10-6-2004 Dr. Sabah Ahmad Dr. Amin Witno

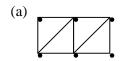

EACH PROBLEM IS WORTH 2.5 POINTS


1.	Which proposition is a contradiction? (a) $(A \to False) \land (\neg A \to False)$ (c) $(A \to B) \land A$	(b) $(A \wedge B) \rightarrow B$ (d) $(\neg A \rightarrow \neg B) \wedge A$
2.	Which proposition is <u>not</u> equivalent to (a) $A \lor (B \to C)$ (c) $(A \to C) \lor B$	$(\neg A \land B) \rightarrow C ?$ $(b) C \lor (B \rightarrow A)$ $(d) C \lor B \lor A$
3.	The decimal number 0.28125 in binary (a) 0.0010101 (c) 0.01010	y is (b) 0.01001 (d) 0.00110
4.	The binary number 101110 in hexadec (a) B8 (c) 8E	cimal is (b) 2E (d) B2
5.	Which numbers satisfy a mod 3 = b m (a) 2 and 9 (c) 0 and 100	od 3 ? (b) 33 and 66 (d) 17 and 18
6.	The value of GCD (144, -278) is equal (a) 12 (c) 2	al to (b) 84 (d) -21
7.	The sequence 1, 2, 4, 8, 16, 32, sat (a) $S_n = 2 \ n$ (c) $S_n = 2 \ S_{n-1}$	tisfy the recurrence relation (b) $S_n = S_{n-1}^{-2}$ (d) $S_n = S_{n-1} + S_{n-2}$
8.	How many positive integers ≤ 100 are (a) 67 (c) 16	e multiples (divisible) of 2 or 3? (b) 83 (d) 50
9.	If $R = \{(1,x), (2,x), (3,y)\}$ and $S = \{(2,x), (2,x), (3,P), (3,Q)\}$ (c) $\{(1,Y), (2,Y), (3,Q), (2,R)\}$	(x,R), (y,P), (y,Q)} then S ° R is equal to (b) {(1,R), (2,R), (3,P), (3,Q)} (d) {(1,x), (2,x), (3,R), (2,P)}
10	 Which relation R is not transitive? (a) {(1,1), (2,2)} (c) {(1,2), (2,1), (1,1)} 	(b) {(1,2), (2,3), (1,3)} (d) { }


- 11. Which matrix represents an equivalence relation?
- 12. Which one is the Hasse diagram for the following digraph?

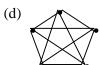
- 13. The degree of K_n is equal to
 - (a) n^2

(b) $n^2 + n$


(c) $n^2 - n$

- (d) 2n 1
- 14. What is the number of nodes (points) in a complete graph K_n with 36 edges?
 - (a) 8

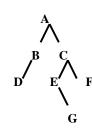
(b) 44


(c) 9

- (d) 10
- 15. Which sequence is a possible degree sequence?
 - (a) 0,0,1,2,1,1,1,0,0,...
- (b) $0,0,5,0,3,0,4,0,0,\dots$
- (c) 0,0,1,3,2,0,2,0,0,...
- (d) 0,1,2,1,3,1,4,0,0,...
- 16. Which graph has an Euler circuit?

- 17. Which graph is planar?
 - (a) K₅

(b) K₆


(c) $K_{2,3}$

- (d) $K_{3,3}$
- 18. Which graph is a tree?
 - (a) K₃

(b) K_4

(c) $K_{1,3}$

- (d) $K_{2,2}$
- 19. The result of post-order algorithm for this labeled binary tree is
 - (a) G, E, F, C, D, B, A
- (b) C, F, E, G, D, B, A
- (c) D, B, A, G, E, C, F
- (d) D, B, G, E, F, C, A
- 20. The result of in-order algorithm (for the same tree) is
 - (a) G, E, F, C, D, B, A
- (b) D, B, A, E, G, C, F
- (c) D, B, A, G, E, C, F
- (d) D, B, G, E, F, C, A

