Exam	1

Discrete Structures

28 - 11 - 2016

Part I. (1 point each) Multiple choice: circle one answer.

1. The proposition $(p \lor q) \to q \equiv$

(A) $p \to q$ (B) $q \to p$ (C) $\neg p \to q$ (D) $\neg q \to p$

2. The set $\{1, 2, 4, 5\} \oplus \{2, 4, 6\} =$

(A) $\{1,5\}$ (B) $\{2,4,6\}$ (C) $\{2,4\}$

(D) $\{1, 5, 6\}$

3. Let $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5\}$. Then |P(A - B)| =

(A) 2

(B) 4

(C) 8

(D) 16

4. The set $A - (A \oplus B) =$

(A) $A \cup B$

(B) $A \cap B$

(C) A - B

(D) Ø

5. The remainder $5634 \mod 11 =$

(A) 0

(B) 1

(C) 2

(D) 7

6. A multiple of 8 is

(A) 222

(B) 225

(C) 245

(D) 256

7. The number of non-negative integer solutions for A + B + C = 15 is

(A) 105

(B) 120

(C) 136

(D) 153

Part II. Complete solution: write your solution on a separate page.

8. (2 points) Evaluate gcd(4050, 540) using the Euclidean algorithm.

9. (3 points) Convert the proposition $(P \to Q) \leftrightarrow R$ to CNF.

10. (3 points) Let A be a set with |A| = 13. Count how many subsets of A which contain at least 3 elements.

11. (5 points) From 1 to 400, count how many integers which are NOT multiples of 8 or 12 or 18.

-Amin Witno