PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Module:Modern Euclidean GeometryPaper:Instructor:Dr. Amin WitnoDate:	Final Exam 6 June 2005
--	---------------------------

Problems 1 to 6: Circle the best choice, 2 points each.

- 1. Three lines are concurrent; the meaning is
 - (a) they all intersect at one point
 - (b) they are all parallel
 - (c) they are all congruent to each other
 - (d) they are not parallel to each other
- 2. What is a definition of AB < CD ?
 - (a) there is E such that A^*B^*E and $BE \approx CD$
 - (b) there is E such that C^*D^*E and $CE \approx AB$
 - (c) there is E such that A^*E^*B and $AE \approx CD$
 - (d) there is E such that C*E*D and CE \approx AB
- 3. What is a bisector of $\angle BAC$?
 - (a) a line that intersects both lines AB and AC
 - (b) a ray AD between AB and AC such that $\angle BAD \approx \angle DAC$
 - (c) half of the angle BAC
 - (d) any point D which is interior of $\angle BAC$
- 4. There exist 3 points which are not collinear. The negation of this statement is
 - (a) There are 3 points which are collinear.
 - (b) There are less than 3 points which are not collinear.
 - (c) Given 3 points, they are collinear.
 - (d) Given a line, there exist 3 points on the line.
- 5. Given a line I and a point P not on I. Which statement cannot be proved in Neutral Geometry?
 - (a) There exists a line through P perpendicular to I.
 - (b) There exists a unique line through P perpendicular to I.
 - (c) There exists at least one line through P parallel to I.
 - (d) There exists a unique line through P parallel to I.
- 6. AAA is a theorem in
 - (a) Neutral Geometry
 - (b) Hyperbolic Geometry only
 - (c) Euclidean Geometry only
 - (d) Euclidean and Hyperbolic Geometries

Problems 7 to 10 are related to the following model, 2 points each.

Points:	A, B, C, D, E
Lines:	$\{A, B\}, \{A, C\}, \{C, D\}, \{B, C, E\}, \{D, E\}$

- 7. In this model the Incidence Axiom 1 is (a) true (b) false.
- 8. In this model the Incidence Axiom 2 is (a) true (b) false.
- 9. In this model the Incidence Axiom 3 is (a) true (b) false.

10. This model satisfies the parallel postulate of

- (a) Euclidean geometry
- (b) Elliptic geometry
- (c) Hyperbolic geometry
- (d) none of them

Problems 11 to 13: Give the definitions, 2 points each.

- 11. the opposite of ray AB
- 12. A and B are on opposite sides of a line I
- 13. $\angle BAC < \angle EDF$

Problems 14 to 16: Write the propositions in detail, 2 points each.

- 14. Angle Addition
- 15. SAA Criterion
- 16. Alternate Interior Angle Theorem

Problems 17 to 19 are related to the following axioms, 2 points each.

Axiom 1: There exist 2 parallel linesAxiom 2: There exist 3 points which are collinearAxiom 3: Given 2 points, there exists a unique line incident with them

- 17. Give a model such that Axioms 1, 2, 3 are all true.
- 18. Give a model such that only Axiom 1 is true, the others false.
- 19. Give a model such that only Axiom 2 is true, the others false.
- 20. Fill in the blanks to complete the proof, 2 points each.

Given $\triangle ABC$ and $\triangle ABD$ where C and D are on opposite sides of line AB. If AC \approx AD and BC \approx BD then $\triangle ABC \approx \triangle ABD$.

Proof.

1. ∠ACD ≈ ∠ADC	()
2. ∠BCD ≈ ∠BDC	(same as 1)
3. ∠ACB ≈ ∠ADB	()
 ΔABC ≈ ΔABD 	()

21. Prove the following proposition, 6 points each.

Given \angle BAC and a point D on the line BC. Prove that if D is in the interior of \angle BAC then B*C*D.