Final Exam

Number Theory

19/06/2023

- 1. Each question is worth 2 points.
 - (a) Find $|g^{84}|_{19}$ given that g is primitive root mod 19.
 - (b) Find all the primitive roots mod 9.
 - (c) Count how many primitive roots mod 353 (prime).
 - (d) Find all the NR mod 11.
 - (e) Determine -8 is QR or NR mod 37.
- 2. (4 points) Use Fermat's little theorem to prove that $589 \mid n^{91} n$ for all $n \in \mathbb{Z}$. (Note $589 = 19 \times 31$)
- 3. (4 points) Solve the root mod congruence $x^{13} \equiv 2 \pmod{23}$.
- 4. (4 points) Compute 4^{2691} % 35 using Euler's theorem.
- 5. (a) (2 points) Evaluate $|7|_{22}$ by completing the following table.

k	1	2	3	4	5	6	7	8	9	10
$7^k \% 22$	7									

- (b) (4 points) Use the table to solve the discrete log problem $19^x \equiv 21 \pmod{22}$.
- 6. (4 points) Determine solutions exist or not exist using the Legendre symbol.

$$2x^2 + 9x + 21 \equiv 0 \pmod{257}$$

- 7. (4 points) Find the four solution classes of $x^2 \equiv 67 \pmod{187}$. (Note 187=11×17)
- 8. (4 points) Prove that $\left(\frac{-2}{p}\right) = +1$ if and only if the prime $p \equiv 1$ or 3 (mod 8).