
WON Series in Discrete Mathematics and Modern Algebra Volume 3

FACTORING COMPOSITES TESTING PRIMES

Amin Witno

Preface

These notes were used for the lectures in Math 472 (Computational Number Theory)
at Philadelphia University, Jordan.1 The module was aborted in 2012, and since then
this last edition has been preserved and updated only for minor corrections. Outline
notes are more like a revision. No student is expected to fully benefit from these notes
unless they have regularly attended the lectures.

1 The RSA Cryptosystem

Sensitive messages, when transferred over the internet, need to be encrypted, i.e.,
changed into a secret code in such a way that only the intended receiver who has the
secret key is able to read it. It is common that alphabetical characters are converted to
their numerical ASCII equivalents before they are encrypted, hence the coded message
will look like integer strings. The RSA algorithm is an encryption-decryption process
which is widely employed today. In practice, the encryption key can be made public,
and doing so will not risk the security of the system. This feature is a characteristic of
the so-called public-key cryptosystem.

Ali selects two distinct primes p and q which are very large, over a hundred digits
each. He computes n = pq, ϕ = (p− 1)(q − 1), and determines a rather small number
e which will serve as the encryption key, making sure that e has no common factor
with ϕ. He then chooses another integer d < n satisfying de%ϕ = 1; This d is his
decryption key. When all is ready, Ali gives to Beth the pair (n, e) and keeps the rest
secret. Now whenever Beth wants to send a message (integer) m < n to Ali, she first
encrypts it to s = me %n. Upon receiving s, Ali decrypts it back to sd %n = m, which
is the intended message. But why does this work, and how safe is it?

Before proceeding with the technicalities, we summarize how the algorithm is done.

1) Ali selects two distinct primes p and q.

2) He determines the following quantities.

a) The product n = p× q.
b) The number ϕ = (p− 1)(q − 1).

1Copyrighted under a Creative Commons License c⃝2006–2018 Amin Witno
Last Revision: 06–11–2018 awitno@gmail.com



WON 3 – Factoring Composites Testing Primes 2

c) An encryption key e, relatively prime to ϕ.
d) The decryption key d, such that de%ϕ = 1.

3) Ali gives to Beth the numbers n and e only.

4) To send m, Beth encrypts it to s = me %n.

5) Receiving s, Ali retrieves sd %n = m.

1.1 The Euclidean Algorithm

In selecting e with no common factors with ϕ, Ali simply has to make sure that e and
ϕ has greatest common divisor (gcd) equals 1. The gcd function satisfies the following
relation which enables Ali to perform the computation quite fast.

Theorem 1.1. For integers m and n ̸= 0, we have gcd(m,n) = gcd(n,m%n).

Example (The Euclidean Algorithm). To evaluate gcd(216, 78), we repeatedly apply
Theorem 1.1 to obtain

gcd(216, 78) = gcd(78, 60) = gcd(60, 18) = gcd(18, 6) = gcd(6, 0) = 6

In each step, we could have computed m%n the old-fashioned way as follows.

216 = 2(78) +60
78 = 1(60) +18
60 = 3(18) +6
18 = 3(6) +0

Or, we may opt to display only the sequence of remainders:

216, 78, 60, 18, 6, 0.

In the above sequence, every three consecutive numbers a, b, c obey the rule a% b = c,
which defines the iteration.

Exercise 1.1. Find gcd(400, 720) and gcd(19392, 29391) following the above example.

Moreover, it can be shown that gcd(m,n) is actually an integral linear combination
of m and n, i.e., gcd(m,n) = am+ bn. The algorithm involved in finding these integers
a and b is a little extension of the Euclidean algorithm.

Example (The Extended Euclidean Algorithm). Let us continue with the previous ex-
ample, and find a and b such that gcd(216, 78) = 216a + 78b. We start by rewriting
each equation in order to express each remainder as a linear combination of m = 216
and n = 78.

60 = 1(216)− 2(78)

18 = 1(78)− 1(60)

= 1(78)− 1{1(216)− 2(78)}
= −1(216) + 3(78)

6 = 1(60)− 3(18)

= 1{1(216)− 2(78)} − 3{−1(216) + 3(78)}
= 4(216)− 11(78)
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Next, we simplify the appearance of the above algorithm by not writing the m and n
in each row. For convenience, we add two extra rows at the top, corresponding to the
linear combinations 216 = 1(216) + 0(78) and 78 = 0(216) + 1(78), in this order.

216 1 0
78 0 1
60 1 −2
18 −1 3
6 4 −11

Note again that the last row gives the desired result gcd(216, 78) = 6 = 4(216)−11(78).

Exercise 1.2. Explain why EEA works and then apply it to the previous exercise.

Next, how does Ali find his decryption key d, for which de%ϕ = 1? (The pair d, e
in this context are modular inverses, since their product is unity.) The condition that
gcd(e, ϕ) = 1 is absolute for such d to exist. In fact, if gcd(m,n) = 1, and once we
have found am + bn = 1 by EEA, then am%n = 1—since we have bn%n = 0 in the
second term—thus we find an inverse for m mod n.

Example. Suppose we are to find d such that 9d%311 = 1. Assume that the value of
gcd(9, 311) = 1 has been verified. Applying EEA,

311 1 0
9 0 1
5 1 −34
4 −1 35
1 2 −69

we find that 9(−69)%311 = 1. So d = −69 is a modular inverse. In the context of
RSA, however, we avoid a negative key and replace this value by adding 311 to it, since
doing so does not alter the residue mod 311. Thus, d = −69 + 311 = 242.

Exercise 1.3. Find 7−1 (mod 12), 35−1 (mod 42), 27−1 (mod 209).

1.2 Successive Squaring Algorithm

In performing the RSA, we note the need of performing a modular exponentiation—
twice in fact: for Beth to compute s = me%n, and for Ali sd %n = m. Especially
for Ali, since the number d may turn up quite large, the following successive squaring
algorithm will reduce computation to a logarithmic running time.

1) Given that we are to evaluate ak %n.

2) Express k as the sum of powers of 2, say k = Σ2ei . This is equivalent to converting
the number k to its binary expansion.

3) Compute a2%n, a4%n, a8%n, . . . up to the highest exponent in Step 1.

4) Evaluate ak %n = Πa2
ei .
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Example (Successive Squaring Algorithm). Let us compute 23106%97. We have 106 =
64+32+8+2 = 26+25+23+21, so that 23106 = (2364)(2332)(238)(232). The successive
squaring part goes as follows.

(23)2%97 = 44
234 %97 = (44)2%97 = 93
238 %97 = (93)2%97 = 16
2316 %97 = (16)2%97 = 62
2332 %97 = (62)2%97 = 61
2364 %97 = (61)2%97 = 35

Hence 23106 %97 = (35)(61)(16)(44)% 97 = 25.

Exercise 1.4. Compute 357%20, 47250%100, 21434 %309 using SSA.

With the tools we have now, we are ready to give a numerical illustration on how
RSA is performed, as an exercise.

Exercise 1.5. Suppose that Ali picks p = 97 and q = 127, with e = 5969.

a) What numbers does Ali let the public (or just Beth) know?
b) What is the decryption key d?
c) If Beth’s message is m = 8411, what will she send to Ali?
d) Verify that Ali will retrieve m from (c) correctly.
e) If Ali receives from Beth the encryption s = 12160, what is the real message m?

1.3 Fermat’s Little Theorem

So why does the RSA algorithm work? To answer this question, we recall a nice little
result of Fermat.

Theorem 1.2 (Fermat’s Little Theorem). If p is a prime number, and a is not a
multiple of p, then ap−1% p = 1.

For example, since 17 is a prime number, we are assured that 216 %17 = 1. At this
time, it is appropriate for us to introduce the congruence notation in order to simplify
complex expressions involving residues which we will encounter soon.

Definition. Two integers a and b are congruent modulo n > 0 if a%n = b%n, in which
case we write a ≡ b (modn). Equivalently, we may define a ≡ b (modn) if and only if
a− b is a multiple of n.

Hence, for example 19 ≡ 4 (mod 3) since 19%3 = 4%3 = 1. FLT can be restated
in the form ap−1 ≡ 1 (mod p), where p and a are as above.

Exercise 1.6. Show that if p is a prime, and a is any integer, then ap ≡ a (mod p).
Prove that this statement implies FLT.

Back to RSA. We simply need to verify that the decryption process will indeed
yield the intended message m. Since de%ϕ = 1, we have de = 1+ kϕ for some integer
k. Then,

sd ≡ (me)d = mde = m1+kϕ (modn)

And because n is a multiple of p and q, the same congruence holds modulo p and
modulo q. Recalling that ϕ = (p− 1)(q − 1), we have

sd ≡ m(mp−1)k(q−1) ≡ m (mod p)
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by FLT. And similarly,

sd ≡ m(mq−1)k(p−1) ≡ m (mod q)

Hence, p and q are two distinct prime factors of sd − m. It follows that the number
sd −m is actually a multiple of n, thus sd ≡ m (modn) as claimed.

Exercise 1.7. The statement of FLT assumes that a is not a multiple of p. Will the
possibility that m happens to be a multiple of p or q affect the above argument? Note
that such a chance would be extremely unlikely as the two primes are quite large.

1.4 Security

But, how about security? What if a bad guy intercepts the secret message s, together
with e and n? Well, they will yet have to find d in order to read the message, and that
in turn they also will need the factors p and q in order to compute ϕ. Woe to them,
n has over 200 digits, and factoring a large integer this size will take an unreasonably
long time, even with today’s state of computing technologies.

Nevertheless, over the years there have been various attempts to break the RSA
cryptosystem. While none of these attacks is a serious blow to the system in general,
it is worthwhile to be aware of certain circumstances under which a specific implemen-
tation of the RSA becomes vulnerable.

1) If p and q are quite close together, say of equal digit length, then it is not difficult to
factor n using Fermat factorization (Chapter 2). It is important therefore to select
p and q of slightly different sizes.

2) If p − 1 factors into small primes, then it is not hard to factor n by Pollard p − 1
method (Chapter 2). This should be avoided in practice by choosing another p if
necessary.

3) If p/q is close to a rational number a/b, where a and b are both small, then n can be
factored quickly using continued fractions (Chapter 2). This too should be avoided.

4) Suppose n has N decimal digits. If the first or the last N/4 digits of p are known,
then it is not too hard to factor n. This applies when parts of p are predictable
because it is obtained, for instance, by letting p = M + k for some fixed, large, odd
integer M , while k runs from 2, 4, 6, . . . until we hit a prime.

5) If an attacker somehow discovers d, it is highly probable that they can factor n.
The probabilistic algorithm for it runs as follows.

a) Let c be an integer such that ac ≡ 1 (modn) for all a with gcd(a, n) = 1, e.g.,
c = de− 1. Randomly select candidates for a, say a = 2, 3, . . . 20.

b) Of these selection, find one a such that ac/2 ̸≡ 1 (modn). If none exists, replace
c by c/2 and repeat this step.

c) Compute g = gcd(ac/2 − 1, n). If g ̸= 1, then g = p or q. Otherwise, try another
a by resuming the previous step.

Example. Let n = 323 = 17 × 19 with e = 95. A quick check shows that d = 191.
Now let c = 191×95−1 = 18144, so c/2 = 9072, and compute 29072, 39072, . . . 209072,
all mod 323. It happens that all these yield 1, hence we start again with a new
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exponent 9072/2 = 4536. This time, we find 34536 %323 = 305 ̸= 1 and evaluate
g = gcd(304, 323) = 19. And yes, 19 is one of the factors of n. If by chance we
had g = 1, we would have to continue searching with 44536, 54536, . . . and with the
exponent 4536/2 = 2268 in the next cycle, etc.

Exercise 1.8. Let n = 209, e = 7, and d = 103. Factor n following the above
example.

6) Without knowing d, it is possible to retrieve the message m via recursive exponen-
tiation as follows. Let s0 = s, and subsequently let sk = sek−1%n. It can be shown
that eventually this will lead to a term sK = s, from which we conclude sK−1 = m.
This algorithm is commonly called the cycling attack, but fortunately this scheme
is generally too slow to be effective, and there are simple ways to make the system
immune to it.

Example. Let n = 299 = 13 × 23 and e = 17. Suppose the encrypted message is
s = 123, so we start calculating 12317 %299 = 197, 19717 %299 = 6, 617 %299 =
288, and so on, generating the following sequence.

123, 197, 6, 288, 32, 210, 292, 119, 71, 41, 123

The last term 4117 %299 = 123 = s reveals that m = 41.

Exercise 1.9. Suppose that n = 319, e = 11, and s = 288. Illustrate the cycling
attack in finding m.

7) If q < p < 2q and d < 1
3
n1/4, then it is not too hard to find d. So, in addition to

the requirement that p and q should not be too close to each other, we should see
that d is large enough, even though doing this would make the decryption process
slower, unfortunately.

8) Paul Kocher in 1995 showed that it is possible to discover d by testing the system
with a series of decryption while carefully timing the computation times. The
assumption is that we know the kind of hardware being used, and there are ways
to thwart this kind of attack.

Exercise 1.10. Suppose two companies are using RSA with n1 = 8051 and n2 = 11371,
and you know that they share a common prime factor. Find a way to factor n1, n2.

1.5 Remarks

1) RSA was named after its three inventors, Rivest, Shamir, and Adleman in 1977, a
few years after the first concept of a public-key cryptosystem was suggested by Diffie
and Hellman. It seems there was evident that such a concept had been secretly used
years before by a British cryptographic agency, including a version of RSA written
by Clifford Cocks.

2) In practice these days, the size of p and q should be about 150 digits each. Large
primes are plenty, e.g., there are π(10150)−π(10149) ≈ 2.6×10147 primes with exactly
150 digits. (It is known that π(x), i.e., the number of primes up to x, is estimated
by x/ log x. For instance, up to a million, there exist roughly 106/ log 106 ≈ 70, 000
primes.) Neither it is hard to find large primes; we will discuss this in Chapter 3.
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3) The RSA works under a crucial assumption that it is hard to evaluate ϕ without
factoring n = pq. The problem of evaluating ϕ is actually equivalent to that of
factoring n, in the sense that solving one solves the other as well: It is clear that
knowing p and q gives ϕ = (p − 1)(q − 1). Conversely, knowing ϕ will lead to the
discovery of p and q as the roots of the quadratic polynomial

f(x) = x2 + (ϕ− n− 1)x+ n = x2 − (p+ q)x+ pq = (x− p)(x− q)

Exercise 1.11. Suppose n = 2747, and we know ϕ = 2640. Factor n.

4) The RSA Laboratories used to offer factoring challenges with prizes ranging from
$10,000 to $200,000. Here was one of the challenge numbers for $50,000 called
RSA-768, which has 232 decimal digits:

n = 12301866845301177551304949583849627207728535695953
34792197322452151726400507263657518745202199786469
38995647494277406384592519255732630345373154826850
79170261221429134616704292143116022212404792747377
94080665351419597459856902143413

5) RSA may be too slow in practice when a massive amount of data is involved. In
such a case, RSA may be needed anyhow for exchanging a private key in order to
establish another, faster type of cryptosystem.

2 Factorization

The most basic factoring algorithm is the trial division, where we experimentally divide
the number n by the primes p = 2, 3, 5, 7, . . . up to

√
n. If this fails to produce a factor,

then n is a prime number. This trial and error technique is obviously slow, and in most
programming application, it is usually the first method tried, say up to p < 10, 000,
before it is abandoned in favor of other, more advanced factoring techniques.

2.1 Divisibility Tests

In the absence of a calculator, the following tests can be performed by hand to find
small prime factors of n. The notation d | n, which reads d divides n, means that n is
a multiple of d.

1) 2 | n if and only if the unit digit of n is even.

2) 3 | n if and only if the digit sum of n is a multiple of 3. For example, for n =
200612345 the digit sum is 2 + 0 + 0+ 6+ 1+ 2+ 3+ 4+ 5 = 23, not a multiple of
3, hence 3 - n. If needed, we compute the digit sum of the digit sum of n until the
sum is conveniently small enough. Similar criterion holds for divisibility by 9.

3) 5 | n if and only if the unit digit of n is either 0 or 5.

4) Suppose the number n consists of 3k digits. Then 7, 11, 13 | n if and only if the
alternating sum of the k consecutive 3-digit blocks of n is divisible by 7, 11, or 13,
respectively. To illustrate this, let n = 007656103, where the two leading zeros have
been added to make the number of digits a multiple of 3. We have 007−656+103 =
−546 = −2× 3× 7× 13, meaning that 7 | n and 13 | n, but 11 - n.
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5) Similarly, 37 | n if and only if 37 divides the sum of the 3-digit blocks of n. For
example, with n = 035487477, we have 35 + 487 + 477 = 999. Since 37 | 999, then
37 | n.

6) 11 | n if and only if the alternating sum of its digits is divisible by 11. For example,
n = 7656103 and 7− 6 + 5− 6 + 1− 0 + 3 = 4, not divisible by 11 and so 11 - n.

7) Given an integer n, remove the unit digit, say u, and denote what remains by t.
Then 17 | n if and only if 17 | t − 5u. For example, n = 23562, where u = 2 and
t = 2356. We have t − 5u = 2346. Repeating, with n = 2346, t − 5u = 204, and
next t− 5u = 0. Since 17 | 0, we conclude 17 | n.

8) Keeping the same notations, 19 | n if and only if 19 | t + 2u. With n = 23562,
t+ 2u = 2360, next 236, and next 35, which is enough to see that 19 - n.

9) Divisibility by 7 and by 13 can also be tested using a similar technique employing u
and t, although in practice this method is inferior to the one we have already seen:
7 | n if and only if 7 | t− 2u, and 13 | n if and only if 13 | t+ 4u.

Exercise 2.1. Prove the claims (1) to (9) above.

2.2 Fermat Factorization

If n = x2−y2, then it factors to n = (x+y)(x−y). This fact is the simple idea behind
the method of Fermat Factorization. We seek a factor of n by calculating the numbers
y2 = x2 −n for each integer x ≥

√
n, until we find a perfect square. For example, with

n = 4277, we first calculate
√
4277 ≈ 65.39, so we start with x = 66.

662 − 4277 = 79

672 − 4277 = 212

682 − 4277 = 347

692 − 4277 = 484 = 222

The result is 4277 = 692 − 222 = (69 + 22)(69− 22) = 91× 47.

Exercise 2.2. Factor the numbers 5963, 16781, and 70027.

Remark. Fermat Factorization always works when n is odd, because if n = ab with
both a, b odd, then n = x2 − y2 with x = (a+ b)/2 and y = (a− b)/2. Moreover, this
shows that we should terminate the process when we reach x = (n + 1)/2, in which
case n = n×1 is a prime. However, from

√
n until we reach (n+1)/2 can be extremely

long, unless the factors a, b are close together, so that the small y = (a − b)/2 can be
quickly discovered.

Suppose now that a, b are not that close together, say b is about 5 times as big
as a. Then 5a and b would be close together, hence Fermat Factorization would be
ideal for factoring the number 5n = 5a × b. For example, n = 15963 = 51 × 313. We
deliberately choose this number with one factor about 5 times the other. Not knowing
the factors, applying Fermat Factorization would require 56 iterations. If instead we
work with 5n = 79815, where

√
79815 ≈ 282.51, then we start with x = 283,

2832 − 79815 = 274

2842 − 79815 = 841 = 292
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and at only the second iteration, we find that 79815 = 2842 − 292 = 255 × 313. This
then easily leads to the factors of n. In practice, of course, we do not know the values
of a, b ahead of time, hence it remains a trial-and-error experiment.

2.3 Pollard Rho Method

Suppose n is a large composite, and p is its smallest prime factor. If we randomly
choose more than p numbers from 0 to n − 1, then by the Pigeonhole Principle, two
of them must satisfy the relation x1 ≡ x2 (mod p) while x1 ̸≡ x2 (modn). In that case
gcd(x1 − x2, n) gives a nontrivial factor of n.

In practice, these “random” numbers can be generated by letting x0 = 2, and
recursively xk = (x2

k−1 + 1)%n. It has been experimentally proven that the sequence
generated in this way works well enough for our purposes. Note that if xi ≡ xj (mod p),
then xi+1 ≡ xj+1 (mod p), hence the sequence {xk} is periodic, say of length d. Now
rather than computing gcd(xi − xj, n) for many pairs xi, xj, it is more efficient to
consider only i = 2j, for x2j ≡ xj (mod p) will hold whenever d | j.
Example. Let n = 3107. We start our calculation with x0 = 2 as follows.

k xk %n gcd(x2k − xk, n)
1 22 + 1 = 5
2 52 + 1 = 26 gcd(26− 5, 3107) = 1
3 262 + 1 = 677
4 6772 + 1 ≡ 1601 gcd(1601− 26, 3107) = gcd(1575, 3107) = 1
5 16012 + 1 ≡ 3034
6 30342 + 1 ≡ 2223 gcd(2223− 677, 3107) = gcd(2156, 3107) = 1
7 22232 + 1 ≡ 1600
8 16002 + 1 ≡ 2940 gcd(2940− 1601, 3107) = gcd(1339, 3107) = 13

and we find that 3107 = 13× 239.

Exercise 2.3. Apply Pollard rho method to factor the numbers 133, 1703, and 11357.
Alternate your effort with x0 = 3 instead of 2 and/or with the recurrence relation
xk = x2

k−1 − 1.

Pollard rho method is guaranteed to work as long as we are sure that n is composite.
Probabilistically, it is an excellent factoring technique when n has a relatively small
factor as compared to

√
n. Pollard rho method has also proved to be practical for

factoring medium size integer up to 1015.

2.4 Pollard p− 1 Method

Suppose n is a composite, and p is a prime factor of n. We let xk = 2k!%n for
k = 1, 2, 3, . . . and simultaneously compute gcd(xk − 1, n), in hope that we find a
nontrivial factor of n. By FLT, this works when (p − 1) | k! because then 2k! =

(2p−1)
k!

p−1 ≡ 1 (mod p), and hence p | xk − 1 and p ≤ gcd(xk − 1, n) < n. The exception
would be if xk = 1 and gcd(xk − 1, n) = n, which can occur when all the prime factors
of n behave like p, i.e. (p− 1) | k!, but this is highly unlikely.

Example. Computing xk can be done efficiently through the recurrence relation xk =
xk
k−1. For example, we choose n = 57983 and start with x1 = 2.
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k xk %n gcd(xk − 1, n)
1 2 gcd(1, 57983) = 1
2 22 = 4 gcd(3, 57983) = 1
3 43 = 64 gcd(63, 57983) = 1
4 644 ≡ 20129 gcd(20128, 57983) = 1
5 201295 ≡ 50290 gcd(50289, 57983) = 1
6 502906 ≡ 24711 gcd(24710, 57983) = 1
7 247117 ≡ 37816 gcd(37815, 57983) = 2521
8 378168 ≡ 42858 gcd(42857, 57983) = 2521

We find that 57983 = 2521× 23.

Exercise 2.4. Use Pollard p− 1 method to factor the numbers 689, 16637, and 315391,
say with a bound up to k = 10. Try also with base x1 = 3 instead of 2 for a change.

Pollard p−1 method needs the assumption that n is composite with a prime factor
p, such that p − 1 factors into small primes, to ensure that it divides k! for some
relatively small value of k. Since there is no specific reason we use the initial term
x1 = 2, another value can be employed following an unsuccessful attempt.

Remark. In practice, it may not be necessary to check gcd(xk−1, n) for each k, because
if it is nontrivial for some value k, it will be for k+1 as well, like k = 7 and k = 8 in our
example. For this reason, and since the technique is not guaranteed to bring success,
we might put a bound for k, say up to M , then check only gcd(xM , n) and stop the
process if it fails to find a factor, or run it again with a different x1 value. The setback
for this is that sometimes M may turn out too big, and we miss what we are after. For
instance, with n = 57983 above, 23 is the only other factor of n and 23− 1 = 2× 11,
hence xk = 1 for all k ≥ 11. Nevertheless, for n large, this is not likely the case.

Both the rho method and the p−1 method were invented by J. M. Pollard in 1974.
These days, Pollard p − 1 method is still commonly used for factoring medium size
integers and is the basis for its more powerful generalization called the Elliptic Curve
Method, which will not be discussed here.

2.5 Exponent Factorization

The next three factorization techniques rely upon the following principle, which is
really another form of the so-called Euclid’s lemma.

Lemma 2.1. Suppose x2 ≡ y2 (modn) but x ̸≡ ±y (modn). Then both gcd(x± y, n)
give a nontrivial factor of n.

Exercise 2.5. Prove this lemma.

Exercise 2.6. Factor the number 45113, given that 119992 ≡ 291742 (mod 45113).

Now suppose we find two integers a, b such that ab ≡ 1 (modn). Factor b = 2c × d
such that d is odd, then recursively define x0 = ad %n and xk = x2

k−1 %n for k =
1, 2, . . . , c. If there is in this sequence xk ̸= n − 1 such that xk+1 = 1, then by the
lemma, gcd(xk − 1, n) is a nontrivial factor of n.
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Example. Let n = 15677, and suppose we know that 73840 ≡ 1 (modn). We factor
3840 = 28 × 15 and start computing with a = 7, c = 8, and d = 15.

715 %15677 = 1597

15972 %15677 = 10735

107352 %15677 = 14275

142752 %15677 = 5979

59792 %15677 = 4881

48812 %15677 = 10798

107982 %15677 = 6955

69552 %15677 = 8480

84802 %15677 = 1

Hence, we now evaluate gcd(8480− 1, 15677) = 61, and the result is 15677 = 61× 257.

Note that we will always have xc = 1, since xc ≡ ab (modn). In fact we should ter-
minate this procedure as soon as we encounter the term 1, in which case this algorithm
fails or succeeds, depending on whether or not the previous term is n− 1, respectively.

Exercise 2.7. Factor the number 23797, given that 211648 ≡ 1 (mod 23797). Similarly,
again with the congruence 514848 ≡ 1 (mod 59881).

Exponent Factorization method, so it is called, does not always work, and evidently
it would take another good technique to find the numbers a, b. However, the method
can be used to supplement others, for instance the Pollard p − 1 method, which fails
when 2k! ≡ xk

k−1 ≡ 1 (modn) but gives us a = xk−1 and b = k to be used with
Exponent Factorization method.

2.6 Quadratic Sieve

Suppose n = 91027, and say we find the following congruences.

4272 ≡ 52 × 11 (mod 91027)
5232 ≡ 26 × 7 (mod 91027)
6752 ≡ 2× 5× 72 (mod 91027)
10912 ≡ 2× 32 × 5× 7× 11 (mod 91027)

Multiplying them all results in a congruence with squares on both sides,

(427× 523× 675× 1091)2 ≡ (24 × 3× 52 × 72 × 11)2 (mod 91027)

which simplifies to, taking their residues, 493362 ≡ 96112 (mod 91027). Now use
Lemma 2.1 to obtain a factor of n from gcd(49336−9611, 91027) = gcd(39725, 91027) =
227. And indeed, 91027 = 227× 401.

But how did we discover those congruences? We looked in numbers that are just
a bit larger than

√
kn, so that their squares mod n are small, then we selected those

having prime factors only up to 11. (There is no specific reason for choosing 11, but for
our purposes, it seems ideal to allow primes up to 19.) In fact, we used in our example,
427 = ⌊2n⌋ + 1, 523 = ⌊3n⌋ + 1, 675 = ⌊5n⌋ + 1, and 1091 = ⌊13n⌋ + 4. With three
more selections like these, we organized them in a table.
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4272 5232 6752 8542 10012 10462 10912

2 – 6 1 2 6 8 1
3 – – – – – – 2
5 2 – 1 2 – – 1
7 – 1 2 – – 1 1
11 1 – – 1 1 – 1

Thus we are looking for a linear dependence among the columns modulo 2. Linear
algebra guarantees such dependencies when the number of columns exceeds that of
rows. In fact, there are a few more from this table, e.g.,

8542 × 10012 ≡ (24 × 5× 11)2 (mod 91027)

which produces 356112 ≡ 8802 (mod 91027) and similarly, gcd(35611 − 880, 91027) =
227. Or another instance,

5232 × 10462 ≡ (27 × 7)2 (mod 91027)

which turns out useless: 8962 ≡ 8962 (mod 91027).

Exercise 2.8. Follow the example and factor the numbers 4897, 21733, and 95321, say
allowing prime factors up to 19.

The technique described above is a simplified version of the so-called Quadratic
Sieve, first introduced by Carl Pomerance in 1981. Historically, it was the first method
successful in factoring an arbitrary integer over 100 digits, including one of the challenge
numbers RSA-129. For integers over 200 digits, a more powerful generalization of the
quadratic sieve, called the General Number Field Sieve, is more effective.

2.7 Continued Fractions

A continued fraction is an expression involving a sequence of numbers, all except the
first must be positive, in the form

a0 +
1

a1 +
1

a2+
1

a3+
1
···

which for convenience, shall be symbolically written [a0, a1, a2, a3, . . .], whether or not
the length is finite. For us, a continued fraction is always understood with integer
entries, which in the literature is distinguished by the name simple continued fraction.

Continued fractions is a vast subject, and it is not our plan to study them in depth.
We will be interested only in illustrating the main results which will lead to at least
one factorization technique, first studied by Lehmer and Powers in 1931, again based
on Lemma 2.1.

Theorem 2.2. Every finite continued fraction represents a rational number. Con-
versely, every rational number can be represented by a finite continued fraction.

For examples, [1, 3] = 1 + 1/3 = 4/3 and [2, 1, 3] = 2 + 1/(4/3) = 11/4. You can
see that the first claim can be easily verified by induction.

Exercise 2.9. Evaluate the continued fraction [1, 2, 3, 4].
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To illustrate the converse, we choose the rational number 253/17 and proceed as
follows.

253/17 = 14 + 15/17

17/15 = 1 + 2/15

15/2 = 7 + 1/2

2/1 = 2 + 0

Hence 253/17 = [14, 1, 7, 2], and note that this procedure is really the Euclidean algo-
rithm, which we have seen always terminates after a finite number of steps. Moreover,
we are given a hint that such a representation is uniquely determined by the above
algorithm, with the exception that in the last equation, 2 + 0 can well be expressed as
1 + 1/1, giving an alternate tail 253/17 = [14, 1, 7, 1, 1].

Exercise 2.10. Represent the rational numbers 7/11, −19/9, and 333/99 using finite
continued fractions.

Theorem 2.3. Suppose a0, a1, a2, . . . is a sequence of positive integers, except perhaps
a0 ≤ 0. Then [a0, a1, a2, . . . , ak] = pk/qk, where pk, qk are obtained recursively as follow.

p0 = a0 q0 = 1
p1 = a0a1 + 1 q1 = a1
pk = akpk−1 + pk−2 qk = akqk−1 + qk−2

For example, with the continued fraction [3, 6, 1, 7], we have

po = 3 qo = 1 [3] = 3
p1 = 3 · 6 + 1 = 19 q1 = 6 [3, 6] = 19/6
p2 = 1 · 19 + 3 = 22 q2 = 1 · 6 + 1 = 7 [3, 6, 1] = 22/7
p3 = 7 · 22 + 19 = 173 q3 = 7 · 7 + 6 = 55 [3, 6, 1, 7] = 173/55

Exercise 2.11. Repeat the example using the sequence 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.

Keeping the same notations, we now define an infinite continued fraction, written
[a0, a1, a2, . . .], to be the limit of the sequence pk/qk. This sequence, it can be proved,
always converges to an irrational number, and moreover the terms pk/qk provide an
excellent rational number approximation to its value. It is left to the student to read
about these results as an independent assignment.

Theorem 2.4. Every infinite continued fraction represents an irrational number. Fur-
thermore, it is periodic if and only if it represents a quadratic irrational, i.e., an irra-
tional root of a quadratic polynomial with rational coefficients.

For example, consider the periodic continued fraction [3, 1, 2, 1, 2, 1, 2, . . .] = [3, 1, 2 ].
We find what it represents as follows. Let x = [1, 2 ], then

x = 1 +
1

2 + 1
x

= 1 +
x

2x+ 1
=

3x+ 1

2x+ 1

which yields the quadratic equation 2x2 − 2x − 1 = 0, whose positive root is x =
(1 +

√
3)/2. Therefore,

[3, 1, 2 ] = 3 +
2

1 +
√
3
= 3 +

2(1−
√
3)

(1 +
√
3)(1−

√
3)

=
−6 + 2− 2

√
3

−2
= 2 +

√
3
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Exercise 2.12. Find the quadratic irrationals represented by the periodic continued
fractions [1, 2 ], [1, 2, 3 ], and [1, 2, 3 ]. Write your answers in the form (P +

√
n)/Q.

Theorem 2.5. Suppose we have a quadratic irrational in the form α = (P0+
√
n)/Q0,

such that Q0 | (n−P 2
0 ). Then α = [a0, a1, a2, . . .], where for k = 0, 1, 2, . . ., the integers

ak can be obtained via the following recursive algorithm.

αk = (Pk +
√
n)/Qk

ak = ⌊αk⌋
Pk+1 = akQk − Pk

Qk+1 = (n− P 2
k+1)/Qk

Example. First note that for every quadratic irrational, the condition Q0 | (n − P 2
0 ),

if not already true, can be realized by multiplying each term by |Q0|. For example,

α = (4 +
√
3)/2 does not satisfy this condition, but we have α = 4·2+

√
3·22

2·2 = 8+
√
12

4
,

where 4 | (12− 82) = −52. Then we start with P0 = 8, Q0 = 4, and n = 12.

k Pk Qk αk ak
0 8 4 (8 +

√
12)/4 ≈ 2.86 2

1 2 · 4− 8 = 0 (12− 02)/4 = 3 (0 +
√
12)/3 ≈ 1.15 1

2 1 · 3− 0 = 3 (12− 32)/3 = 1 (3 +
√
12)/1 ≈ 6.46 6

3 6 · 1− 3 = 3 (12− 32)/1 = 3 (3 +
√
12)/3 ≈ 2.15 2

4 2 · 3− 3 = 3 (12− 32)/3 = 1 (3 +
√
12)/1 ≈ 6.46 6

Since (P4, Q4) = (P2, Q2), we stop at k = 4 and obtain the periodic continued fraction
(4 +

√
3)/2 = [2, 1, 6, 2 ].

Exercise 2.13. Repeat the example with the numbers
√
3, the golden ratio (1+

√
5)/2,

and (5−
√
7)/4, and represent them using periodic continued fractions.

Given a composite n, possibly very large, we find the continued fraction representa-
tion of

√
n = [a0, a1, a2, . . .] following Theorem 2.5, with P0 = 0, Q0 = 1, α0 =

√
n, and

a0 = ⌊
√
n⌋. Conversely, the convergents (think of partial sums) pk

qk
= [a0, a1, a2, . . . , ak]

can be evaluated as in Theorem 2.3.
The key to factoring n is the following identity.

p2k − nq2k = (−1)k+1Qk+1

It can be shown that this quantity is small, independently from k. In fact, Qk < 2
√
n.

Hence, the sequence pk provides suitable trial numbers x to be used in a factor base
technique similar to that in quadratic sieve, where

x2 = p2k ≡ (−1)k+1Qk+1 (modn)

Example. Let n = 65363. The two theorems generate the following table.
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k Pk Qk ak pk qk p2k − nq2k
0 0 1 255 255 1 –338
1 255 338 1 256 1 173
2 83 173 1 511 2 –331
3 90 331 1 767 3 22
4 241 22 22 17385 68 –287
5 243 287 1 18152 71 221
6 44 221 1 35537 139 –154
7 177 154 2 89226 349 313
8 131 313 1 124763 488 –103
9 182 103 4 588278 2301 121
10 230 121 4 2477875 9692 –7
11 254 7 72 178995278 700125 409
12 250 409 1 181473153 709817 –98

Compare the last column to that ofQk, where each entry is bounded by 2
√
65363 < 512.

These will serve as the trial numbers p2k (mod 65363), whose factorizations are given
in the next table. We discard the trial number if it has a prime factor larger than, say,
17. We will also include the prime –1 in order to accommodate the plus/minus sign.

p2k ≡ (−1)k+1Qk+1 –1 2 3 5 7 11 13 17
2552 ≡ –338 1 1 – – – – 2 –
7672 ≡ 22 – 1 – – – 1 – –

181522 ≡ 221 – – – – – – 1 1
355372 ≡ –154 1 1 – – 1 1 – –
5882782 ≡ 121 – – – – – 2 – –
24778752 ≡ –7 1 – – – 1 – – –

1814731532 ≡ –98 1 1 – – 2 – – –

We quickly notice the single row of square—only to be disappointed:

5882782 ≡ 112 (mod 65363)

112 ≡ 112 (mod 65363)

The next attempt is again futile:

(767× 35537× 2477875)2 ≡ (−1× 2× 7× 11)2 (mod 65363)

(−154)2 ≡ 1542 (mod 65363)

But at last, we find a row combination that does the trick:

(255× 181473153)2 ≡ (−1× 2× 7× 13)2 (mod 65363)

226382 ≡ 1822 (mod 65363)

This leads us to the final step of computing gcd,

gcd(22638− 182, 65363) = gcd(22456, 65363) = 401

and the factorization of n,
65363 = 163× 401

It is an unfortunate fact, as we have seen in this example, that the congruence x2 ≡
y2 (modn) may turn trivial. However, it is not hard to prove that such bad luck has
only a 50% chance or less to meet us.

Exercise 2.14. Follow the example and factor the number 112529.
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3 Primality Testing

Recall that in RSA, there is the need to recognize a large prime number. In this
chapter, we will see a few algorithms for testing primes and composites. To begin
with, it should be pointed out that primality testing does not necessarily involve a
factorization attempt.

Theorem 3.1 (Wilson’s Theorem). If p is prime, then (p− 1)! ≡ −1 (mod p).

Exercise 3.1. Given that 31 is prime, evaluate 28!% 31 with the help of Wilson’s the-
orem.

The converse of Wilson’s theorem also holds. We will prove a weaker version, as
follows.

Theorem 3.2. The number n > 4 is composite if and only if n divides (n− 1)!.

Proof. If n is prime, it is clear that none of the numbers 1, 2, 3, . . . , n−1 has a factor of
n, hence let us assume that n is composite. By the uniqueness of prime factorization,
it suffices to show that any prime power pk which divides n also divides (n− 1)!. This
would be trivial if pk < n, so let n = pk for the challenge. The fact that p divides into
(pk − 1)! at least k times is readily obtained if kp < pk. The worst case, i.e., when
k ≥ pk−1 ≥ 2k−1, occurs only with k = 2 and also p = 2—that is why we have to
exclude n = 4. ▽

For example, the fact that 30!% 31 = 30 proves that 31 is a prime number. And
because 90!% 91 = 0, we know that 91 is a composite, without factoring it! This
particular test is unfortunately far too slow to be useful in practical application. Nev-
ertheless, it serves as an illustration that primality testing and factorization are not
identical problems.

3.1 Pseudoprimes

Suppose p is a prime. By FLT, ap−1 ≡ 1 (mod p) for every integer a not divisible by
p. This statement is equivalent to having ap ≡ a (mod p) for any integer a. So, here is
another test for compositeness. For example, we compute 2398617%398617 = 291108,
hence 2398617 ̸≡ 2 (mod 398617). This means that 398617 cannot be a prime.

FLT, however, does not work in the other direction. We have 2935 ≡ 29 (mod 35)
even though 35 is not a prime. This deceiving kind of a composite is what we loosely
call a pseudoprime. In this case, we might want to try another value of a, e.g., 1235 ≡
3 ̸≡ 12 (mod 35), which confirms that 35 is composite.

Definition. But is it possible that for some composite n we have an ≡ a (modn) for
every integer a? The answer is yes, and such n is called a Carmichael number.

Example. The smallest Carmichael number is 561 = 3× 11× 17. To verify that a561 ≡
a (mod 561), it suffices by CRT to justify the congruences a561 ≡ a (mod 3, 11, 17)
independently. Now by FLT, a2 ≡ 1 (mod 3) when 3 - a, hence a560 = (a2)280 ≡
1 (mod 3), and it follows that a561 ≡ a (mod 3) for any integer a. For the other two
moduli 11 and 17, it can be done in a similar way.

Exercise 3.2. Prove that 1729 is a Carmichael number by showing a1729 ≡ a (mod 1729)
for every integer a.
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Theorem 3.3 (Korselt’s Criterion). A composite number n is a Carmichael number
if and only if it factors into distinct primes such that (p− 1) | (n− 1) for each factor p.

For example, 1105 = 5 × 13 × 17, where each factor is distinct. We check that
4 | 1104, and 12 | 1104, and 16 | 1104. Hence, 1105 is another Carmichael number.

Exercise 3.3. Apply Korselt’s criterion on the numbers 10659, 19747, and 62745 to see
if they are Carmichael numbers.

Carmichael numbers, in a way, are composites that masquerade themselves as
primes. Obviously, even numbers have no such chance to fool us, and indeed they
are already ruled out by the theorem:

Exercise 3.4. Use Korselt’s criterion to show that Carmichael numbers are all odd, and
that each must have at least three prime factors.

A number with only distinct prime factors is called a square-free number, since it is
not divisible by any square. A Carmichael number, in other word, must be composite,
square-free, plus the divisibility conditions stated above. First conjectured in the year
1910, it was now proven in 1984 that there exist infinitely many Carmichael numbers.
The first seven Carmichael numbers are 561, 1105, 1729, 2465, 2821, 6601, and 8911.

Definition. Define a composite number n to be a Fermat pseudoprime to the base
a if it passes Fermat test: an ≡ a (modn), which is equivalent to the congruence
an−1 ≡ 1 (modn) when gcd(a, n) = 1. Earlier, we have seen that 35 is a Fermat
pseudoprime to the base 29 but not to the base 12. We can now say that Carmichael
numbers compose the intersection of all Fermat pseudoprimes to different bases.

Exercise 3.5. Find a Fermat pseudoprime less than 100 to the base 3.

3.2 Strong Pseudoprimes

The existence of Carmichael numbers is unfortunate as far as primality test using
FLT is concerned. We need stronger, if not deterministic, primality tests which are
reasonably easy to implement and fast. We turn first to the following easy-to-obtain
fact related to primes.

Theorem 3.4. If x2 ≡ 1 (mod p), where p is prime, then x ≡ ±1 (mod p).

Thus, in an attempt to catch a Fermat pseudoprime, whereby an−1 ≡ 1 (modn),

we “take square root” to obtain a congruence in the form a
n−1
2 ≡ ±1 (modn). If the

congruence does not hold, then we know n is composite, but if it does, unfortunately,
no conclusion can be drawn, unless a

n−1
2 ≡ 1 (modn), in which case we may iterate

the process by taking another square root and again, for as long as the exponent is an
even number. This explains the following compositeness test.

Theorem 3.5 (Miller-Rabin Test). Suppose that an−1 ≡ 1 (modn) for some odd
number n and base number a. Write n− 1 = 2c × d, where d is odd, and construct the
sequence of c+ 1 numbers

ad %n, a2d%n, a4d %n, a8d %n, . . . , a2
c×d %n

If there is a 1 in this sequence which is preceded by a number other than 1 or n − 1,
then n is composite.
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Note that the sequence is generated by successive squaring, which is much faster
than the reverse order of taking successive square roots. In particular, the last term is
really an−1%n, which presumably equals 1, for else n is already found composite by
FLT.

Example. Let n = 561, the first Carmichael number. We have 560 = 24×35. Choosing
the base a = 2, we find in what follows that n fails MRT, hence 561 is composite.

235 ≡ 263 (mod 561)
2632 ≡ 166 (mod 561)
1662 ≡ 67 (mod 561)
672 ≡ 1 (mod 561)
12 ≡ 1 (mod 561)

Definition. In view of Theorem 4.2, we call a composite odd number a strong pseudo-
prime to the base a if it passes MRT. The smallest example of a strong pseudoprime to
the base 2 is n = 2047. One can verify that it is composite and, since 2046 = 2× 1023,
that 21023 ≡ 1 (mod 2047), thereby passing the test.

Exercise 3.6. Apply MRT on the numbers 3281, 4681, and 6673 using the base numbers
2, 3, and 5. Is any of these a strong pseudoprime? Can you conclude the primality for
each number?

It is clear that MRT is stronger than FLT in their roles of compositeness testing.
We may say,

Theorem 3.6. To the same base, every strong pseudoprime is a Fermat pseudoprime.

What is more, there is no analog of Carmichael numbers to watch for here. It means
that a strong pseudoprime will eventually fail MRT for some choice of a base number
a. However, to prove that n is prime by MRT may not be feasible since we would have
to see that it pass the test for every base a. Nevertheless, it has been shown that if n
is composite, then at least 75% of the base numbers a selected between 1 and n − 1
will fail it. Hence, if n is composite, the probability that it will pass the test for a few
randomly chosen bases will be extremely small.

Theorem 3.7 (Rabin’s Probabilistic Primality Test). Given an odd integer n, we
select k positive integers less than n as base numbers for the Miller-Rabin test. The
probability that n is a strong pseudoprime to all k bases is less than 1/4k.

For example, testing n using base numbers 2, 3, 5, 7, and 11 will prove either n
is composite or else (possibly) prime with probability over 1− (1/4)5 = 0.9990234375
of being correct. To convince ourselves even further with statistical facts, up to n =
25, 000, 000, 000 there are

> 1,000,000,000 primes
21853 Fermat pseudoprimes to base 2
4842 strong pseudoprimes to base 2
2163 Carmichael numbers
184 strong pseudoprimes to bases 2 and 3
13 strong pseudoprimes to bases 2, 3, and 5
1 strong pseudoprime to bases 2, 3, 5, and 7
0 strong pseudoprime to bases 2, 3, 5, 7, and 11
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In addition, the smallest strong pseudoprime to the bases 2 and 3 is 1,373,653, while
to the bases 2, 3, and 5 is 25,326,001. The single pseudoprime to the bases 2, 3, 5,
and 7 is known to be the number 3,215,031,751. Hence, for the rest of the 25 billion
numbers minus one, it suffices to test for primality up to these four bases. (In fact, it
is still true for all n < 118, 670, 087, 467, which is the next strong pseudoprime to the
four bases!)

3.3 Euler Pseudoprimes

Definition. With an integer a and a prime p > 2, the Legendre symbol
(
a
p

)
is defined

as follows. (
a

p

)
=


1 if x2 ≡ a (mod p) has a solution

−1 if x2 ≡ a (mod p) has no solution
0 if p | a

In the case
(
a
p

)
= 1, we say that a is a quadratic residue modulo p, else a quadratic

non-residue when
(
a
p

)
= −1. A known fact is the next theorem, discovered by Euler.

Theorem 3.8 (Euler’s Criterion). The Legendre symbol
(
a
p

)
≡ a(p−1)/2 (mod p).

We generalize the Legendre symbol by allowing the denominator to be composite.
This will also provide a very practical way to compute the symbol. Let n = p1 p2 · · · pk
be the product of odd prime numbers, not necessarily distinct.

Definition. Define the Jacobi symbol(a
n

)
=

(
a

p1

)(
a

p2

)
· · ·

(
a

pk

)
and let

(a
1

)
= 1

Theorem 3.9. Let n,m denote odd positive numbers.

1)
(
ab
n

)
=

(
a
n

)(
b
n

)
2)

(
a

mn

)
=

(
a
m

)(
a
n

)
3)

(−1
n

)
= (−1)(n−1)/2

4)
(
2
n

)
= (−1)(n

2−1)/8

Theorem 3.10 (The Law of Quadratic Reciprocity).
(
m
n

)
=

(
n
m

)
(−1)(m−1)(n−1)/4

Example. We use the properties of Jacobi symbol to evaluate(
22

221

)
=

(
2

221

)(
11

221

)
= (−1)

2212−1
8

(
221

11

)
(−1)

(10)(220)
4 = −

(
1

11

)
(1) = −1

Exercise 3.7. Evaluate
(
37
83

)
,
(−816

239

)
, and

(
1414
2063

)
.

Euler’s criterion is the basis for our next compositeness test, the Euler test. For
example, with n = 341 and a = 2, we compute

(
2

341

)
= −1, contrary to the fact that

2170 %341 = 1. In violation of Euler’s criterion, it is conclusive that 341 is composite.
Note that we have replaced the Legendre symbol in Euler’s criterion by the Jacobi
symbol

(
2

341

)
, since Legendre symbol only applies to primes. This, however, does not

affect our claim.
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Definition. Similarly again, we define an Euler pseudoprime to the base a to be a
composite odd number n, for which the Jacobi symbol satisfies

(
a
n

)
≡ a(n−1)/2 (modn).

For example, it is not hard to check that 1105 is an Euler pseudoprime to the base
2, since it is composite and

(
2

1105

)
≡ 2552 ≡ 1 (mod 1105). The next proposition states

that the strength of Euler test in testing composites is somewhat in between FLT and
MRT.

Theorem 3.11. To the same base, every strong pseudoprime is an Euler pseudoprime,
and every Euler pseudoprime is a Fermat pseudoprime.

Exercise 3.8. To the same base a, conversely, an Euler pseudoprime n can sometimes
be a strong pseudoprime, in particular when n%4 = 3, or when

(
a
n

)
= −1. Try to

prove these two claims.

Similar to MRT, Euler test can be used as a deterministic primality test, for it can
be proved that if n is composite, then it is guaranteed to fail Euler’s criterion for some
base number a. This result is nevertheless not very practical for large n. Theoretically,
what has been shown is that only up to half of the base numbers need to be tested
in order to prove primality, and this fact supports the following probabilistic primality
test.

Theorem 3.12 (Solovay-Strassen’s Probabilistic Primality Test). Given an odd integer
n, we randomly select k positive integers less than n as base numbers for Euler test.
The probability that n is an Euler pseudoprime to all k bases is less than 1/2k.

3.4 Extended Fermat Tests

Recall that Fermat pseudoprimes are an evidence that the converse of FLT is not
necessarily true. There are, nevertheless, primality tests based on a partial converse
of FLT. What it means is that if an odd integer n and some base number a satisfy
the congruence an−1 ≡ 1 (modn), plus some other conditions which are to be specified
later, then n has to be a prime. In this section, we introduce three such tests, none of
which is deterministic. But first, a little theoretical development.

Definition. For any integer a and modulus n, denote by |a|n the order of a mod n, i.e.,
the smallest positive integerm such that am%n = 1, if exists—otherwise, let |a|n = ∞.

For example, the sequence 4m%13, where m = 1, 2, 3, . . . is given by

4, 3, 12, 9, 10,1, 4, 3, 12, 9, 10,1, 4, 3, 12, 9, 10,1, 4, 3, 12, 9, 10,1, 4, 3, 12, 9, 10,1, 4, . . .

We observe that |4|13 = 6. In the following results, we assume that |a|n exists.

Exercise 3.9. Evaluate |7|25 and |2|29.

Theorem 3.13. We have ak %n = 1 if and only if |a|n divides k.

Proof. Let k = |a|nq+r, where 0 ≤ r < |a|n. Then ak = (a|a|n)qar ≡ ar (mod n), since
a|a|n ≡ 1 (mod n). If r = 0, then ak ≡ 1 (mod n); and if r ̸= 0, then ar ̸≡ 1 (mod n)
by the minimality of |a|n, proving the claim. ▽

Now if p is prime, by FLT we have ap−1 % p = 1. Hence, |a|p is a divisor of p− 1, if
p is a prime not dividing a. A partial converse of this statement is sometimes useful:
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Lemma 3.14. Let n be a number such that |a|n = n− 1. Then n is a prime.

This claim is trivial for those who have learned about Euler’s ϕ-function and his
theorem; without it, our proof here is rather lengthy.

Proof. Assume n to be composite. We first consider the case where n is a power of a
prime, say n = pk, and we shall show that |a|n < n− 1. By FLT, ari(p−1) ≡ 1 (mod p)
where we let ri ranges from 1 to n/p. These pk−1 powers of a may be expressed in
the form pmi + 1. If in one of them pk−1 | mi, then we have ari(p−1) ≡ 1 (mod n) and
|a|n ≤ n − n/p < n − 1. If not, then we can find two for which mi ≡ mj (mod pk−1),
and correspondingly ari(p−1) ≡ arj(p−1) (mod n). It follows that the sequence of am%n
has repeated its cycle by this point, and since |a|n is assumed finite, we must have a 1
somewhere in the cycle, again implying that |a|n < n− 1.

For the general case, let n =
∏

pk. Note that a
∏

|a|
pk ≡ 1 (mod n) by the uniqueness

of prime factorization as the LHS is 1 modulo each pk. Hence |a|n ≤
∏

|a|pk ≤
∏
(pk−1)

and so, assuming at least two primes, |a|n ≤ (pk − 1)n/pk < n− 1. ▽

Suppose now we have an−1 ≡ 1 (mod n). By the preceding theorem, |a|n is a divisor
of n− 1. So, if perhaps ak ̸≡ 1 (mod n) for every k dividing n− 1, then |a|n = n− 1,
and the lemma tells us that n must be a prime number. This was first discovered by
Lucas.

Theorem 3.15 (Lucas’ Primality Test). Suppose n is odd and an−1 ≡ 1 (modn).
Then n is a prime if in addition, a(n−1)/q ̸≡ 1 (modn) for every prime q dividing n− 1.

Example. To illustrate, we apply Lucas’ test with n = 3329. We try a = 3 and find that
33328 ≡ 1 (mod 3329). Since 3328 = 28 × 13, we proceed with the two prime divisors
q = 2 and q = 13. Neither of these is congruent to one: 33328/2 = 31664 ≡ −1 (mod 3329)
and 33328/13 = 3256 ≡ 2970 (mod 3329). Hence, 3329 is a prime.

Note that in this case, if n is prime, then a(n−1)/2 ≡ ±1 (modn). (Why?) So, in
order for Lucas’ test to work, it is necessary that a(n−1)/2 ≡ −1 (modn).

Exercise 3.10. Illustrate Lucas’ test, if applicable, using the prime numbers 1009, 2689,
and 23801.

The next theorem slightly improves computation time.

Theorem 3.16 (Pocklington’s Primality Test). Suppose n is odd and an−1 ≡ 1 (modn).
Write n − 1 = FR, with F > R and gcd(F,R) = 1. Then n is a prime if in addition,
gcd(a(n−1)/q − 1, n) = 1 for every prime q | F .

Example. For Pocklington’s test, let n = 3001. We have 3000 = 53× 24, where 53 > 24
and gcd(53, 24) = 1. Choose a = 2, which satisfies the congruence 23000 ≡ 1 (mod 3001),
and find that 23000/5 = 2600 ≡ 1125 (mod 3001). It happens that gcd(1125− 1, 3001) =
1, hence we conclude that 3001 is prime.

The advantage of this test is that we do not need to complete the factorization of
n − 1, i.e., the R part. The idea is to factor out one or more primes off n − 1, to the
highest possible exponent, until F > R, where R is the unfactored part, and hope that
the gcd conditions come up alright.

Exercise 3.11. Repeat the previous exercise using Pocklington’s test, if applicable,
involving as little computation as possible.
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The next test can be viewed as a special case of Pocklington’s. Due to its simplicity,
this test has been used extensively, and with a degree of success, to search for large
primes of the given form.

Theorem 3.17 (Proth’s Primality Test). Suppose n = 2c× d+1, where 2c > d. Then
n is a prime if a(n−1)/2 ≡ −1 (modn).

Exercise 3.12. Write the proof of Proth’s theorem.

Example. With the same n = 3329 used in Lucas’ test, Proth’s test requires checking
only the first congruence (with q = 2), because 3328 = 28 × 13 satisfies the condition
28 > 13. It gives the same conclusion that 3329 is a prime.

Exercise 3.13. Discover three larger primes using Proth’s test by choosing a value of c
between 10 and 20 and some appropriate small number d.

4 Prime Search

In the remainder of these notes, we discuss numbers of special types which are of
interest in relation to primality testing and prime number search, or otherwise simply
recreational.

4.1 Fermat Numbers

Let us look for primes in the sequence am + 1. Observe that if m = pk for some odd
prime p, then (ak)p + 1 ≡ (−1)p + 1 = 0 (mod ak + 1). This shows that am + 1 has
a factor of ak + 1, hence composite. So, in order to have a chance to meet primes, m
must have no odd prime factors. This leads to the definition of Fermat numbers.

Exercise 4.1. Find a factor of the number 240 + 1 without evaluating it.

Definition. For each n ≥ 0, we define the Fermat number Fn = 22
n
+ 1.

Fermat numbers begin with F0 = 3, F1 = 5, F2 = 17, F3 = 257 and F4 = 65537,
which happen to be all primes, thus called Fermat primes. However, the next Fermat
number, F5 = 4294967297, is composite. In fact, it is not known whether or not there
are any more Fermat prime beyond F4, and it is commonly believed there are not.

Exercise 4.2. Use induction to prove the recurrence relation Fn = F0F1F2 . . . Fn−1 +2,
then use this fact to show that Fermat numbers are relatively prime one to another—
thus another proof that there are infinitely many prime numbers.

Proposition 4.1. Every prime divisor of Fn is of the form 2n+1k + 1.

Proof. Any prime factor pmust meet 22
n ≡ −1 (mod p). Squaring, 22

n+1 ≡ 1 (mod p).
Together, these two say that |2|p divides 2n+1 but not 2n (why?), hence |2|p = 2n+1.
Since |2|p also divides p− 1 (why?), we have p = 2n+1k + 1 as claimed. ▽

This proposition can be used to test the primality of Fn for small values of n. In
fact, a stronger proposition assures that every prime factor of Fn comes in the form
2n+2k + 1. You might try to establish this claim with the help of Euler’s criterion.

Example. Take F4 = 65537. The only possible prime divisors are of the form 64k + 1,
and there is only one of them up to

√
65537 < 257, namely 193. It happens that

193 - 65537, hence F4 is a Fermat prime.
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Exercise 4.3. Find a prime divisor of F5 in like manner.

Theorem 4.2 (Pepin’s Primality Test for Fermat Numbers). Other than F0, the Fer-
mat number Fn is prime if and only if 3(Fn−1)/2 ≡ −1 (modFn).

For example, F1 = 5 is prime, and we check that 32 ≡ −1 (mod 5). Note that since
Fn − 1 is a power of 2, the sufficiency in this theorem is an immediate result of Lucas’
test (or Proth’s test with d = 1). To prove necessity is a bit more involved, and we
will not do it here.

Exercise 4.4. Illustrate Pepin’s test for the Fermat numbers F2, F3, and F4 if you want.

Pepin’s primality test, though deterministic, is very slow due to the enormous size
of Fn as n increases. With a pocket calculator, it is perhaps manageable still to use
this theorem to show that F5 is composite without factoring it.

4.2 Mersenne Primes

We next look at the sequence am − 1. This time, if m is composite, say m = kn,
then (ak)n − 1 ≡ (1)n − 1 = 0 (mod ak − 1). In that case, the number am − 1 would
certainly be composite. To avoid only-composite sequence, the exponent m must be a
prime—this leads us to the definition of Mersenne primes.

Exercise 4.5. Find two factors of the number 235 − 1 without evaluating it.

Definition. For each prime p, we define the Mersenne number Mp = 2p − 1. When Mp

happens to be prime, we call it a Mersenne prime.

The first few Mersenne numbers are Mersenne primes: M2 = 3,M3 = 7,M5 =
31,M7 = 127. The next one, M11 = 2047, is composite. No one knows whether or not
there are infinitely many Mersenne primes, although it is commonly conjectured that
there are. Only 50 Mersenne primes Mp are known at the time of this writing, with the
largest one having p = 77232917, discovered in January 2018. It would take 23,249,425
digits to write out the number M77232917 in decimal.

Proposition 4.3. Except for M2, every prime divisor of Mp is of the form 2pk + 1.

Proof. Say Mp has a prime factor q. The congruence 2p ≡ 1 (mod q) implies that |2|q
divides p and, p being prime, |2|q = p. Since |2|q divides q − 1 (why?), then q − 1 is a
multiple of p and, being even, can be written q − 1 = 2pk as claimed. ▽

This proposition can help in testing the primality of Mp for small values of p. You
can improve this result by using Euler’s criterion to show that every prime factor of
Mp comes in the form 8k ± 1.

Example. Consider M11 = 2047. The only possible prime divisors are in the form
22k + 1, and there is only one of them up to

√
2047 < 46, namely 23. It happens that

23 | 2047, hence M11 is found composite.

Exercise 4.6. Determine the primality of the Mersenne numbers M13 and M17.

Theorem 4.4 (Lucas-Lehmer Primality Test for Mersenne Numbers). Let Mp be a
Mersenne number. Consider the recursive sequence given by xn = (x2

n−1 − 2)%Mp,
with initial term x1 = 4. Then Mp is prime if and only if xp−1 = 0.
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Example. Consider the Mersenne number M5 = 31, a prime.

x1 = 4 %31 = 4
x2 = 42 − 2 %31 = 14
x3 = 142 − 2 %31 = 8
x4 = 82 − 2 %31 = 0

Exercise 4.7. Repeat the previous exercise, this time using LLT.

In an earlier version of this test, Lucas used the initial term x1 = 3, but it worked
only when p%4 = 3. LLT is surprisingly simple and easily implemented. It is one of
the algorithms employed by The Great Internet Mersenne Prime Search (GIMPS) at
www.mersenne.org, a site dedicated to finding world record primes.

4.3 Perfect Numbers

A number n is perfect when n equals the sum of its own divisors, including 1. For
example, the divisors of 28 are 1, 2, 4, 7, and 14, which all sum to 1+2+4+7+14 = 28.
Hence, 28 is a perfect number. Another way to define a perfect number is by way of
the sigma function.

Definition. Over the domain of positive integers, the function σ(n) denotes the sum of
all the divisors of n, including 1 and n itself, e.g., σ(28) = 1+2+4+7+14+28 = 56.
We call n perfect when σ(n) = 2n.

Exercise 4.8. Prove that if gcd(m,n) = 1, then σ(mn) = σ(m) σ(n). Use this fact to
evaluate σ(560) by factoring the number 560 into primes.

It has been shown that all even perfect numbers are given in terms of Mersenne
primes. In the following theorem, the first statement was demonstrated by Euclid,
whereas the second, two millennia later, was proved by Euler.

Theorem 4.5. If Mp = 2p − 1 is a Mersenne prime, then 2p−1Mp is a perfect number.
Conversely, every even perfect number comes in this form.

Half of the proof. Let Mp be a Mersenne prime. A divisor of n = 2p−1Mp is either
d ∈ {1, 2, 22, 23, . . . , 2p−1} or d×Mp . Since 1 + 2 + 22 + · · ·+ 2p−1 = 2p − 1, we have

σ(n) = (2p − 1) + (2p − 1)Mp = (2p − 1)(1 +Mp) = (Mp)(2
p) = 2n

and n is perfect. ▽

Exercise 4.9. Hence, there is a one-to-one correspondence between Mersenne primes
and even perfect numbers. Find the smallest six even perfect numbers by identifying
their corresponding Mersenne primes.

Exercise 4.10. Try to prove the following properties, shared by every even perfect
number n = 2p−1Mp .

1) The unit digit of n is either 6 or 8.

2) Except for n = 6, we always have n%9 = 1.

3) In binary, n is written with p ones followed by p− 1 zeros.
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4) The number n is triangular. A triangular number is any of the form 1+2+3+. . .+k,
for some integer k. In particular, k = Mp for this n.

Perfect numbers have a very fascinating history. They seem to posses certain mys-
tical values to the ancient Greeks and have been studied to modern times by math-
ematicians, philosophers, poets, and theologians. While the list of Mersenne primes,
hence even perfect numbers, seems to be endless, no one to date has ever seen an odd
perfect number, if any exists.
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4) M. Kř́ıžek, F. Luca, and L. Somer, 17 Lectures on Fermat Numbers: From Number
Theory to Geometry, Springer 2001.

Pseudoprimes < 400,000

A list of Fermat pseudoprimes to the base 2. A dagger (†) indicates a Carmichael
number, and a double dagger (‡) indicates a strong pseudoprime to the base 2.

341 †561 645 †1105 1387 †1729 1905 ‡2047
†2465 2701 †2821 ‡3277 ‡4033 4369 4371 ‡4681
5461 †6601 7957 ‡8321 8481 †8911 10261 †10585
11305 12801 13741 13747 13981 14491 15709 ‡†15841
16705 18705 18721 19951 23001 23377 25761 ‡†29341
30121 30889 31417 31609 31621 33153 34945 35333
39865 †41041 41665 ‡42799 †46657 ‡49141 49981 ‡†52633
55245 57421 60701 60787 †62745 †63973 65077 ‡65281
68101 72885 ‡74665 †75361 ‡80581 83333 83665 ‡85489
87249 ‡88357 88561 ‡90751 91001 93961 †101101 ‡104653
107185 113201 †115921 121465 123251 †126217 129889 129921
‡130561 137149 149281 150851 154101 157641 158369 162193
†162401 164737 †172081 176149 181901 188057 †188461 194221
196021 ‡196093 204001 206601 208465 212421 215265 215749
219781 ‡220729 223345 226801 228241 ‡233017 241001 249841

‡†252601 ‡253241 ‡256999 258511 264773 266305 ‡271951 272251
275887 276013 †278545 ‡280601 282133 284581 285541 289941
294271 †294409 ‡†314821 318361 323713 332949 †334153 †340561
341497 348161 ‡357761 367081 387731 ‡390937 396271 †399001
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Primes < 4,000

2 3 5 7 11 13 17 19 23 29 31
37 41 43 47 53 59 61 67 71 73 79
83 89 97 101 103 107 109 113 127 131 137

139 149 151 157 163 167 173 179 181 191 193
197 199 211 223 227 229 233 239 241 251 257
263 269 271 277 281 283 293 307 311 313 317
331 337 347 349 353 359 367 373 379 383 389
397 401 409 419 421 431 433 439 443 449 457
461 463 467 479 487 491 499 503 509 521 523
541 547 557 563 569 571 577 587 593 599 601
607 613 617 619 631 641 643 647 653 659 661
673 677 683 691 701 709 719 727 733 739 743
751 757 761 769 773 787 797 809 811 821 823
827 829 839 853 857 859 863 877 881 883 887
907 911 919 929 937 941 947 953 967 971 977
983 991 997 1009 1013 1019 1021 1031 1033 1039 1049
1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117
1123 1129 1151 1153 1163 1171 1181 1187 1193 1201 1213
1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289
1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373
1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 1453
1459 1471 1481 1483 1487 1489 1493 1499 1511 1523 1531
1543 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607
1609 1613 1619 1621 1627 1637 1657 1663 1667 1669 1693
1697 1699 1709 1721 1723 1733 1741 1747 1753 1759 1777
1783 1787 1789 1801 1811 1823 1831 1847 1861 1867 1871
1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951
1973 1979 1987 1993 1997 1999 2003 2011 2017 2027 2029
2039 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113
2129 2131 2137 2141 2143 2153 2161 2179 2203 2207 2213
2221 2237 2239 2243 2251 2267 2269 2273 2281 2287 2293
2297 2309 2311 2333 2339 2341 2347 2351 2357 2371 2377
2381 2383 2389 2393 2399 2411 2417 2423 2437 2441 2447
2459 2467 2473 2477 2503 2521 2531 2539 2543 2549 2551
2557 2579 2591 2593 2609 2617 2621 2633 2647 2657 2659
2663 2671 2677 2683 2687 2689 2693 2699 2707 2711 2713
2719 2729 2731 2741 2749 2753 2767 2777 2789 2791 2797
2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887
2897 2903 2909 2917 2927 2939 2953 2957 2963 2969 2971
2999 3001 3011 3019 3023 3037 3041 3049 3061 3067 3079
3083 3089 3109 3119 3121 3137 3163 3167 3169 3181 3187
3191 3203 3209 3217 3221 3229 3251 3253 3257 3259 3271
3299 3301 3307 3313 3319 3323 3329 3331 3343 3347 3359
3361 3371 3373 3389 3391 3407 3413 3433 3449 3457 3461
3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539
3541 3547 3557 3559 3571 3581 3583 3593 3607 3613 3617
3623 3631 3637 3643 3659 3671 3673 3677 3691 3697 3701
3709 3719 3727 3733 3739 3761 3767 3769 3779 3793 3797
3803 3821 3823 3833 3847 3851 3853 3863 3877 3881 3889
3907 3911 3917 3919 3923 3929 3931 3943 3947 3967 3989


