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THE PRIMITIVE ROOT THEOREM

AMIN WITNO

Abstract
A primitive root g modulo n is when the congruence ¢g* = 1 (mod n) holds
if x = ¢(n) but not if 0 < = < ¢(n), where ¢(n) is the Euler’s function. The
primitive root theorem identifies all the positive integers n modulo which primi-
tive roots exist. We give detailed proof of this theorem using elementary number
theory and shortly discuss some connection with results in abstract algebra.

These notes! are written for a supplementary lecture in the Number Theory course
(Math 313) at Philadelphia University, Jordan. Outline notes are more like a revision.
No student is expected to fully benefit from these notes unless they have regularly
attended the lectures.

Appetizer

Throughout these notes, the integer n is understood no less than 2. We use the
notation a % n to mean the residue upon dividing the integer a by n. In particular,
when a % n = b%n then we write a = b (mod n) and refer to n as the modulus of the
congruence. An earlier theorem which will be mentioned a few times in these notes is
the so-called Chinese remainder theorem, abbreviated CRT.

Theorem 1 (Chinese Remainder Theorem). Let gcd(m,n) = 1. Thena = b (mod mn)
if and only if @ = b (mod m) and a = b (mod n).

We will also assume the familiar Euler’s theorem, which we shall state after briefly
reintroducing the Euler’s phi function.

Definition. For a fixed n, let R = {z € {1,2,...,n — 1} | ged(z,n) = 1}. We define
¢(n) = |R|. Moreover, we define a reduced residue system modulo n, abbreviated RRS,
to be any set S with |S| = ¢(n) such that {z%n |z € S} = R.

For example, for n = 12 we have R = {1,5,7,11}. Hence ¢(12) = 4. In this case,
an RRS modulo 12 can be any set of four integers as long as their residues form the
set R, e.g., {5,7,11,13},{13,17,19,23}, or simply {1,5,7,11}.

To evaluate ¢(n) in general, we go by factoring n into primes and computing for
each prime power according to the following rules.
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1. For any prime number p, we have ¢(p) = p — 1.

2. For any prime power p¥, we have ¢(p*) = p* — p*~L.

3. If ged(m,n) = 1 then ¢(mn) = ¢p(m)op(n).
For example, since 1200 = 2% x 3 x 52, we evaluate

$(1200) = ¢(2* x 3 x 57)
= 0(2") x ¢(3) x ¢(5%)

(2* —2%) x (3—1) x (5> - 5)
8 x2x20
320

As a light exercise before we enter the main part of the discussion, try to prove the
following fact concerning ¢(n) which will prove useful later as we move on.

Exercise 2. The function ¢(n) returns an even number for all n > 3.

Theorem 3 (Euler’s Theorem). Let ged(a,n) = 1. Then a®™ =1 (mod n).

Main Course

Euler’s theorem, in particular, allows us to proceed with the following definition of
orders modulo n.

Definition. Let ged(a,n) = 1. By the order of a modulo n, denoted by |a|,, we mean
the least positive integer k for which a* %n = 1.

For example, let a =2 and n =7. We have 2! %7 =2, 22%7 =4, and 22 %7 = 1.
Therefore, |2|; = 3. Because of Euler’s theorem, we will always have |a|,, < ¢(n). Also
true, but not too obvious, is the fact that |al, | ¢(n). We will illustrate this special
relation using the example n = 13 and different values of a in the range 1 < a < 12.
The following table displays the residues a* %13, up to k = ¢(13) = 12, and the
respective order |a|;3 for each number a, all of which are divisors of 12.

a a2 & dt & d® a a® a a0 ! g2 ‘ a3
11 1 1 1 1 1 1 1 1 1 1 1
2 4 8 3 6 12 11 9 5 10 7 1 12
39 1 3 9 1 3 9 1 3 9 1 3
4 3 12 9 10 1 4 3 12 9 10 1 6
5 11 8 1 5 1 8 1 5 11 8 1 4
6 10 8 9 2 12 7 3 5 4 11 1 12
7T 10 5 9 11 12 6 3 8 4 2 1 12
g 11 5 1 & 11 5 1 & 11 5 1 4
9 3 1 9 3 1 9 3 1 9 3 1 3
0 9 12 3 4 1 10 9 12 3 4 1 6
1 4 5 3 7 12 2 9 & 10 4 1 12
121 12 1 12 1 12 1 12 1 12 1 2
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Theorem 4 (Order Divides Phi). Let ged(a,n) = 1. Then for any exponent k& > 1,
we have a* = 1 (mod n) if and only if |a|, | k. In particular, we have |al, | ¢(n).

Proof. Let |a|, = m, so that a™ %n = 1, and choose a positive integer k. Then let
k%m = r and write k = mq + r, where ¢ = |k/m]. We have

a* = a™" = (™) x a" =a” (mod n)

In particular, since 7 < m, we must have a®* = 1 (mod n) if and only if r = 0, i.e., if
and only if m | k. Combined with Euler’s theorem, this result immediately gives the
second claim, |al, | ¢(n). \V4

Using the preceding theorem plus CRT, we may obtain another result on modular
order which we will need later in proving our main theorem.

Theorem 5. Let |a|, = k and |b|,, = [ such that ged(k,l) = 1. Then |ab|, = kl.

Proof. Let |abl,, = h. We first claim that ¢’ =1 (mod n) by observing that
a" = a" (" = (ab)" = ((ab)")' =1 (mod n)

Hence Theorem 4 implies that k | [h. However, as ged(k,l) = 1, we then have k | h.
A completely symmetrical argument swapping the roles of a and b will give us [ | h,
which by CRT yields &l | h. On the other hand we can see that h | kI upon observing
that (ab)® = (a*)!(b")* =1 (mod n). Thus we conclude that h = kI, as desired. \V/

So we have seen that |al|, | ¢(n) and, in particular, the largest possible order of
an integer modulo n is ¢(n). The peculiar case where |a|,, = ¢(n) is the center of our
attention throughout this lecture.

Definition. An integer g such that ged(g,n) = 1 is called a primitive root modulo n
when [gl, = §(n).

In the table given earlier, we see that there are four primitive roots modulo 13, i.e.,
elements of order 12, namely 2, 6, 7, and 11. Note that these four correspond to the
table rows in which the entries are all distinct. This is the first observation concerning
primitive roots.

Theorem 6. Let gcd(g,n) = 1. Then g is a primitive root modulo n if and only if the
set {g,9% ¢°,...,g*™} is an RRS modulo n.

Proof. Let G = {g,¢% ¢°,...,9?™}. Note that every element of G is relatively prime
to n. Hence G is an RRS modulo n if and only if these powers of g are all distinct
modulo 7, in which case |g|,, = #(n) since g™ =1 (mod n) by Euler’s theorem. On
the other hand if G is not an RRS, say ¢* = ¢" (mod n) with 1 <k < h < ¢(n), then
g"* =1 (mod n) with h — k < ¢(n) and so |g| < ¢(n). Thus the claim. \V/

The next observation is not too obvious: Consider the row of 2,22,23, ... in the
previous table. With 2 being a primitive root, we know that this row forms an RRS
modulo 13. Now observe that the four primitive roots modulo 13 come in the form
21 =2, 2° =6, 2" = 11, and 2! = 7. What do we know about the exponents 1, 5, 7,
11?7 They form an RRS modulo 12! This fact generalizes to a result which enables us
to count ahead of time the number of primitive roots modulo a given n.
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Theorem 7. Let g be a primitive root modulo n. Then ¢ is also a primitive root
modulo n if and only if m is relatively prime to ¢(n).

Proof. Let |g™| = k and ¢ = ¢(n). Since |g| = ¢ and ¢™* = 1 (mod n), we have
that ¢ | mk. Meanwhile, we also have (¢™)? = 1 (mod n), so that k | ¢. Now if
ged(m, ¢) = 1 then the relation ¢ | mk implies ¢ | k, in which case k = ¢ and ¢™ is a
primitive root. But if ged(m, ¢) = d > 1 then

(g™ = (g")™* =1 (mod n)
In this case k < ¢/d < ¢, showing that g™ is not a primitive root modulo 7. v
Corollary 8. If any exists, there are exactly ¢(¢(n)) primitive roots modulo n.

Proof. Let g be a primitive root modulo n. To see how many primitive roots we
have, according to Theorem 6 it suffices to count from the RRS {g, ¢% ¢°, ..., g?™}.
Theorem 7 then tells us exactly when the exponent m in the range 1 < m < ¢(n)
yields a primitive root ¢g™. The number of such m is given by ¢(¢p(n)). \V4

Note that the corollary applies only when at least one primitive root modulo n
exists. In fact, for some n there will be no primitive roots at all. For example, let
n = 8, for which an RRS is {1, 3,5, 7}. Observe that a®? % 8 = 1 for each a in this RRS.
This shows that the order of a is at most 2 and will never equal ¢(8) = 4. We conclude
that no primitive root exists modulo 8.

Therefore, we wish to know when we have and when we do not have primitive roots,
for a given modulus n. The complete answer is stated in the so-called primitive root
theorem, whose proof is the main reason for this lecture.

Theorem 9 (The Primitive Root Theorem). Let n equal 2 or an odd prime power.
Then there exist primitive roots modulo n and also modulo 2n. There are no primitive
roots with any other moduli.

To prove the primitive root theorem, hencefoth abbreviated PRT, we break it down
into a number of smaller claims. The case n = 2 is, of course, quite trivial to verify.
The next first observation sheds light on the “2n” part in the statement of the theorem.

Lemma 10. Let n be an odd modulus. There are primitive roots modulo n if and
only if there are modulo 2n.

Proof. Note that ¢(2n) = ¢(n) since n is odd. Let us consider an odd number g. The
relation g¥ = 1 (mod 2) holds for an arbitrary exponent k, hence by CRT, ¢* = 1
(mod n) if and only if ¢* =1 (mod 2n). In particular, g is a primitive root modulo n
if and only if g is modulo 2n. Now observe that by definition a primitive root modulo
2n is necessarily odd, whereas an even number A can be a primitive root modulo n.
In the latter case, the number h + n, being of the same residue class, will be an odd
primitive root modulo n. In other words, a primitive root modulo 2n is also a primitive
root modulo n, and conversely, a primitive root modulo n leads to a (possibly different)
primitive root modulo 2n. \V4

The next lemma reveals why primitive roots cannot exist when the modulus n has
more than one odd prime factor.
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Lemma 11. Suppose that p | n for some odd prime p. If there is a primitive root
modulo n, then either n = p¥ or n = 2p* for some integer k£ > 1.

Proof. Write n = mp® for some integer m with p f m. Let us assume that m > 3
and we will show that primitive roots modulo n do not exist. To start, note that
d(n) = ¢(m)d(p*), where both ¢(m) and ¢(p*) are even numbers. (Your Exercise 2!)
For any integer a relatively prime to n, we have

a®™/2 _ (a¢(m))¢(pk)/2 =1 (mod m)

and similarly
qfm/2 — (a¢(pk))¢(m)/2 =1 (mod p")

both by Euler’s theorem. It follows that a®™/2 = 1 (mod n) by CRT, showing that
lal, < @(n)/2, and that is why there can be no primitive roots. \V/

The preceding two lemmas leave us with two items left in order to claim PRT: (1)
that primitive roots exist modulo any odd prime power and (2) that primitive roots
do not exist modulo a power of two higher than the second. We deal with (2) first.

Lemma 12. Let n = 2¥ with k£ > 3. Then there are no primitive roots modulo n.

Proof. For k = 3, we have seen why there are no primitive roots modulo 8, i.e., because
a* =1 (mod 8) for all odd numbers a, whereas to have a primitive root we need an
odd number of order ¢(8) = 4. We proceed by induction on k to show that

2k72

a® =1 (mod 2¥) (1)

for all odd numbers a, the order of which will never reach ¢(2%) = 2%, In fact, if we
assume (1) then there is a number m such that a® * = 1+ m2*. Square both sides of
this equality and we get

@ =14+ m2" 4 m22% =1 (mod 2¢1)
Thus the induction step is justified. \V4

We are now down to one last claim: that we have primitive roots modulo p*, where
p is any odd prime. We choose to first assume that primitive roots exist modulo p—
whose proof we save for last—and then see that we do not need to look far to find a
primitive root modulo p* for all k£ > 2. This step will take two lemmas.

Lemma 13. Let ¢ be a primitive root modulo an odd prime p such that ¢g?=! # 1
(mod p?). Then ¢®®") 1 (mod p**1) for all k > 1.

Proof. The stated condition is merely the base case k£ = 1 for an inductive proof. The
induction step goes as follows. Euler’s theorem allows us to write g¢(pk) =1+ mp".
The induction hypothesis implies that p { m. Since ¢(p**1) = pF*l — pkF = ¢ (p*) x p,
the binomial theorem (explained in the appendix) applies to give us

gqb(p’““) = (14+mp")P =14+mp"™ £1 (mod p*+?)

as desired. \V4
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Lemma 14. Let g be a primitive root modulo an odd prime p. Then either g or g+ p
is a primitive root modulo p* for all k > 1.

Proof. Consider first the case where g?~! # 1 (mod p?), in which we will prove our
claim by showing that for all £ > 1,

gl = o(P") ="' (p— 1) (2)

Well, (2) already holds for k = 1, so let us proceed by induction. Let |g|x+1 = m. Then
the congruence g™ = 1 (mod p*) implies, assuming (2), that p*~*(p — 1) | m. At the
same time, we have m | ¢(p*™!) = p*(p — 1). That leaves only two possibilities: either
m = ¢(p**1) as we wish, or else m = p*~1(p — 1) = ¢(p*). Thanks to the preceding
lemma, it is not possible to have |g|+1 = ¢(p*), so we are done.

Now in case gP"' = 1 (mod p?), we will instead consider g + p, which is still a
primitive root modulo p and which, by the binomial theorem, satisfies the condition

(g+p) ' =g+ -1 p=1-¢"?p#1 (modp’)

as p1g. The same argument as before now implies that g+ p is a primitive root modulo
all powers of p. \V/

Thus, let us deal with the final task: primitive roots modulo an odd prime. Just
for convenience, however, we will include the prime 2 in the coming propositions since
the results, though trivial, also hold modulo 2. This last section is actually not as easy
as it may seem, but not too hard either. We break the proof in three parts.

Lemma 15. Consider a polynomial with integer coefficients of the form
f(x) = ag+ a1x + agx® + - - + aa”

and let p denote a prime such that p 1 a. (This is to say that the degree of f(z)
is k modulo p.) Then f(z) can have at most k zeros modulo p. In other words, no
more than k elements in the RRS {1,2,...,p— 1} can be a solution to the congruence

f(z) =0 (mod p).

Proof. We use induction. For k = 0, it is clear that f(z) = a¢ has no zero (i.e., zero
zero!) modulo p as p f ag. Now assume that the claim is already true for all polynomials
of degree up to k— 1 modulo p. If f(x) has less than k zeros, we have nothing to prove;
otherwise let 21, 29, ..., z; denote k distinct zeros of f(z) modulo p. Then we let

g9(x) = f(x) —ax(r = 21)(x — 22) -+ (& = 2)

Note that the degree of g(z), if any, is strictly less than k and yet g(z;) = 0 (mod p)
for the k values of z;. The induction hypothesis forces that g(z) be the zero polynomial
modulo p. It follows that

f(x)=ap(z — z1)(x — 29) -+ - (x — 2;) (mod p)

Therefore, as p is a prime number, f(z) = 0 (mod p) if and only if p divides one of
the k brackets on the right hand side, i.e., if and only if z = z; (mod p). Thus we
have proved that any zero of f(z) must come from among these k already here, and
the induction is complete. \V4
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Lemma 16. Suppose that d | p — 1 for some prime number p. Then the polynomial
x% — 1 has exactly d zeros modulo p.

Proof. Write p — 1 = dk and let f(z) =1+ 2¢+ (z9)? + .-+ + (z¥)*~'. Then we have
the relation
Pt -1 = (2% - 1) f(x)

Now Euler’s theorem says that a?~! = 1 (mod p) for all @ € {1,2,...,p — 1}, hence
the polynomial 2P~! — 1 has dk zeros modulo p. Since p is prime, every zero of zP~! —1
must be a zero of either ¢ — 1 or of f(z). But the preceding lemma says that both
% — 1 and f(x) have at most d and dk — d zeros, respectively. This is possible only
when 2¢ — 1 has ezactly d zeros and f(z) exactly dk — d zeros. \V/

At last, we establish PRT with the following proposition, itself quite an important
result.

Theorem 17. There are exactly ¢(p — 1) primitive roots modulo every prime p.

Proof. The quantity ¢(p — 1) is, of course, given by Corollary 8 once we show that we
have at least one primitive root.

Let ¢ be a prime such that ¢* | p — 1 for any fixed exponent k > 1. We will show
that there exists an integer a such that |a|, = ¢*. Well, the preceding lemma allows us
to consider the ¢* zeros of the polynomial 27" — 1 modulo p. If a is one of these zeros,
then the congruence a? = 1 (mod p) implies that |al, | ¢* by Theorem 4. Hence,
la|, = ¢/ where 0 < j < k. Now if j < k then a would be a zero of the polynomial
24" —1, for which again Theorem 4 says that there are only ¢*~! such zeros. It follows
that we actually have ¢* — ¢*~1 choices for an integer a with |a|, = ¢*.

To complete the proof, we factor p — 1 into prime powers of the form p — 1 = [] ¢*.
For each prime power ¢*, we find as above an element a, such that |a,|, = ¢*. Then
Theorem 5 applies to enable us to construct the integer g = [[ a4, whose order modulo
pis []¢* = p — 1; thus a primitive root modulo p. \V4

Please note the interesting quantity ¢* —¢*~! = ¢(¢"*) appearing in the above proof.

Side Dish

As a passing remark, students who have studied Abstract Algebra may realize that
primitive roots are really generators for the group U,, i.e., the multiplicative group
of units of integers modulo n. Hence, the group U, is cyclic if and only if there is a
primitive root modulo n: exactly for the values of n stated in PRT.

Just for fun, we will now demonstrate an alternate proof for the existence of a
primitive root modulo a prime using the language of abstract algebra. We shall assume
some common notation and results, with or without proofs, but bear in mind that this
section is strictly for advanced students.

Let G be a group and a € G. Recall that a cyclic subgroup generated by a is given
in the form (a) = {a* | k € Z}. The order of a in G is then defined by |a|c = [(a)|. Tt
is known that the order of any group element must divide the order of the group. In
fact, the order of any subgroup must divide the order of the group.

If it happens that (a) = G then we call the group G cyclic. The following fact
concerning cyclic groups is quite well known, and we will rely on it to prove another
result involving the FEuler’s phi function.
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Theorem 18. Let GG be a cyclic group of order n. Then G has a unique subgroup of
order d if d | n, and no subgroup of order d if d 1 n.

Theorem 19. We have n = ) ¢(d), where the sum ranges over all divisors d | n.

Proof. Consider a cyclic group G of order n and let a have order d in G. Write
(a) = {a,a? a3, ..., a%}, where a? = e, the identity element of G. We can think of (a)
like the RRS of Theorems 6 and 7. In this case, we see that a™ have order d if and
only if ged(m, d) = 1, and so there are ¢(d) elements of order d in the subgroup (a).
And if b € G is any other element of order d, then (b) = (a) by the preceding theorem.
We conclude that G contains ezactly ¢(d) elements of order d. Moreover, Theorem 18
allows us to partition the elements of G according to their order d, all of which form
the complete divisors of n. Thus the claim ) ¢(d) = n. \V/

It will take two more lemmas in order to reach our goal of proving that the group
U, is cyclic, provided that p is a prime number.

Lemma 20. Let G be a finite group with identity element e. Suppose that z* — e has
at most k zeros in G for every k > 1. Then G is cyclic.

Proof. Let |G| = n and choose an element a € G. Suppose that the cyclic subgroup
{a) has order d. Then every x € {(a) satisfies the relation 2¢ = e, hence by assumption,
all the zeros of z% —e belong to (a). In particular, if an element b € G has order d, then
b € (a) and therefore, (b) = (a). We conclude that if there is an element of order d in
G, then there are exactly ¢(d) such elements. With the fact that such d must divide
n, in order to meet the equality Y ¢(d) = n from Theorem 19, we see it necessary that
G have an element of order d for every divisor d | n. In particular, there is an element
of order n, i.e., one that generates G as a cyclic group. v

Lemma 21. Let F' be a field. Every polynomial of degree k over F' has at most k
Zeros.

Proof. We use the fact that if z is a zero of f(x) over a field, then f(x) = (xr—2)g(z) for
some polynomial g(z) of degree one less than that of f(x). Moreover, another property
of a field, any other zero of f(z) would then be a zero of g(x). This situation calls for
a proof by induction, where the base case k = 0 is trivial since a constant polynomial
has no zero. \V4

Theorem 22. Let F' be a finite field. The multiplicative group F* = {x € F' | x # 0}
is cyclic. In particular, if p is a prime number, then the group U, is cyclic.

Proof. The result is an obvious consequence of the two lemmas applied to the finite
group F™*. The group U, where p is prime, is none other but the set of nonzero elements
of the field Z, as a special case. \V4

Dessert

The binomial theorem employed in Lemmas 13 and 14 refers to the following formula
for expanding powers of a binomial over the real numbers.

(x+y)" = i (Z) z" Ty

k=0
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The notation ( Z) stands for the binomial coefficient and is given by

(i)

In particular, (8) =1 and (?) = n. Hence for example, with x = 1 and n = 7, the
formula writes as follows.

(L4+y)" =1+ Ty + 21y* + 35y° + 35y* + 219° + 795 + o7
To prove the binomial theorem, you just need to write out the n brackets

(z+y) (@ +y) - (v+y)

and observe that each like term comes by collecting z-terms from n — k brackets and
y-terms from the remaining k brackets. How many terms of this kind will determine
the coefficient (’,;‘), and that is the number of ways we can choose k elements out of n.
If ordering were important, there would be

nn—1)Mn-=2) - (n—k+1)

choices. Without ordering, we just need to divide this quantity by k!, i.e., the number
of ways we can permute the k selections. Thus,

Now multiply denominator and numerator by (n — k)! and we are set.

Take Away

Students who are interested to learn more about primitive roots, or elementary number
theory in general, may wish to look up my text Theory of Numbers, BookSurge Pub-
lishing 2008. In particular, the fifth chapter, which deals with the topic of primitive
roots, is available on the Internet as a pdf file at the following address.

http://www.witno.com/numbers/chap5b.pdf



