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FINITE ABELIAN GROUPS

Amin Witno

Abstract

We detail the proof of the fundamental theorem of finite abelian groups,
which states that every finite abelian group is isomorphic to the direct product
of a unique collection of cyclic groups of prime power orders. We briefly discuss
some consequences of this theorem, including the classification of finite abelian
groups of a given order.

These notes are presented in conjunction with a supplementary lecture in the Ab-
stract Algebra 1 course (Math 342) at Philadelphia University, Jordan. The contents
herein are structured in a way suitable as an independent reading project for students
of group theory. Outline notes are more like a revision. No student is expected to fully
benefit from these notes unless they have regularly attended the lectures.1

What is direct product?

Let A and B be two arbitrary groups, not necessarily with the same binary operations.
We define the direct product of A and B to be

A×B = {(a, b) | a ∈ A, b ∈ B}

This two-dimensional set is again a group if we consider the operation where for every
two elements (a, b), (c, d) ∈ A×B, we set (a, b)(c, d) = (ac, bd).

In some texts, our definition of direct product may be introduced by the name
external direct product. You will soon see why the adjective is added, but first let us
observe some elementary facts which are not hard to verify and which are intuitively
clear anyhow.

Proposition 1. The following properties hold which concern the direct product of
groups.

1. The commutative property: A×B ≃ B ×A. Think of swapping places between
the components; doing so does not affect the structure of the group.

1Copyrighted under a Creative Commons License c⃝2012 Amin Witno
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2. The associative property: A× (B ×C) ≃ (A×B)×C. This allows us to simply
write multiple products without brackets, e.g., A×B × C.

3. The substitution property: If A ≃ A′ and B ≃ B′, then A×B ≃ A′ ×B′.

4. The cancellation property: If A ≃ A′ and A×B ≃ A′ ×B′, then B ≃ B′.

5. The identification property: We may treat the group A as a subgroup of A×B by
identifying A with the subgroup A× {e}, where e denotes the identity element.
Of course, by symmetry, we may also call the coordinate B a subgroup of A×B,
i.e., {e} ×B.

Another result which we have not discussed in class is the useful criterion for ex-
pressing an arbitrary group as a direct product of its subgroups.

Theorem 2. Let G be a group with two normal subgroups H and K, with the condi-
tions that H ∩K = {e} and HK = G. Then G ≃ H ×K.

We remark first that we will be concerned with only abelian groups, where all
subgroups are automatically normal.

The hypothesis of Theorem 2 is sometimes used as the definition of G being the
internal direct product of H and K. In other words, Theorem 2 states that internal
implies external. Conversely, given G = H ×K, we have two normal subgroups, i.e.,
H ×{e} ≃ H and {e}×K ≃ K, whose internal direct product recovers G. Hence, the
two notions of external and internal direct products are actually equivalent.

Proof. We first show that every element of H commutes with any other of K. Let
h ∈ H and k ∈ K. We note that hkh−1k−1 = (hkh−1)k−1 ∈ K because K is normal,
and similarly hkh−1k−1 = h(kh−1k−1) ∈ H. However, H ∩ K = {e}, so we see that
hkh−1k−1 = e, i.e., that hk = kh.

This result opens the way for a homomorphism θ : H × K → HK defined by
θ(h, k) = hk. As we can check,

θ((h, k)(h′, k′)) = θ(hh′, kk′) = hh′kk′ = hkh′k′ = θ(h, k)θ(h′, k′)

Since HK = G, we are only left with showing that θ is one-to-one and onto. Well, onto
is quite obvious by the very definition of HK. For one-to-one, let θ(h, k) = θ(h′, k′),
so that hk = h′k′. Then h−1h′ = k(k′)−1. The left side belongs to H and the right
to K. This is possible only if both be the identity element. Thus h = h′ and k = k′,
completing the proof. ▽

To make the result complete, we need to extend Theorem 2 inductively to three or
more subgroups. This is your exercise, and to help you with the induction step, why
don’t you start off with three subgroups.

Exercise 3. Let G be a group with three normal subgroups H, K, and L, such that
H ∩K = {e}, HK ∩ L = {e}, and HKL = G. Prove that G ≃ H ×K × L.
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The fundamental theorem

The fundamental theorem essentially states that every finite abelian group is isomorphic
to a direct product of cyclic groups. Recall that every cyclic group of order n is given
by the modular integers Zn under addition mod n. Hence, to illustrate, an abelian
group of order 1200 may actually be isomorphic to, say, the group Z40 × Z6 × Z5.

Furthermore, let us recall the Chinese remainder theorem, which we shall abbreviate
CRT, and which says that if gcd(m,n) = 1, then Zmn ≃ Zm × Zn. In the preceding
example, we may then replace Z40 by Z23 × Z5, and Z6 by Z2 × Z3.

Therefore, we will state the fundamental theorem like this: every finite abelian
group is the product of cyclic groups of prime power orders. The collection of these
cyclic groups will be determined uniquely by the group G. Here is why.

Suppose we have two direct products of order 1200, e.g.,

A = Z23 × Z5 × Z2 × Z3 × Z5

B = Z52 × Z22 × Z22 × Z3

It is easy to see why A ̸≃ B: the group A has an element of order 8, i.e., (1, 0, 0, 0, 0).
On the other hand if (a, b, c, d) ∈ B, then (a, b, c, d)m = (0, 0, 0, 0) where m is the least
common multiple of 25, 4, and 3. Since m is not a multiple of 8, we conclude that
there is no elements of order 8 in B.

In general, to show that such isomorphism is impossible, simply take any prime
factor p for which there is a discrepancy between left and right. Say, Zpj and Zpk

be the maximal components of A and B, respectively, with j > k. (If j = k, the
cancellation property allows us to omit the factor Zpk and start over with the rest.)
Then A would have an element of order pj, whereas B would not, so the two can’t
possibly be the same groups.

Hence, we will now formally state the fundamental theorem of finite abelian groups,
abbreviated FTFAG, as follows.

Theorem 4 (FTFAG). Every finite abelian group is isomorphic to the direct product
of a unique collection of cyclic groups, each having a prime power order.

To remark, by the word collection used in the theorem, we mean a multiset, i.e.,
where repetition of elements is allowed but ordering them is not important.

Elements of the proof

The uniqueness part in statement of FTFAG is already explained. To make the proof
more readable, we go by step-by-step observations. As a matter of fact, the first one
is an easy exercise for you to warm up before the long journey.

Exercise 5. Let G be a group with identity element e and a normal subgroup H, and
let x ∈ G. Suppose that the element Hx has order n in the factor group G/H. Then
x has order in G a multiple of n.

The truth is, the preceding exercise is needed to establish the next result, which
is actually the famous Cauchy’s theorem applied to abelian groups. We talk about
Cauchy’s theorem in the lecture but did not get to really prove it, so we have no choice
but to buy the theorem right here.
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Theorem 6 (Cauchy). Let p be a prime number. If any abelian group G has order a
multiple of p, then G must contain an element of order p.

Proof. Let |G| = kp for some k ≥ 1. In fact, the claim is true if k = 1 because any
group of prime order is a cyclic group, and in this case any non-identity element will
have order p. We proceed by induction. Take any non-identity element x ∈ G, say
of order m. We are done if p divides m, for then xm/p will have order p. Otherwise,
consider the factor group G′ = G/⟨x⟩, of order |G′| = kp/m. Since m is not a multiple
of p, we may write |G′| = jp for some j < k. We apply the induction hypothesis to
conclude that G′ contains an element of order p. According to the preceding exercise,
then G contains an element of order a multiple of p, and that suffices. ▽

Lemma 7. Let G be an abelian group with identity e. For a fixed positive integer n,
the set H = {x ∈ G | xn = e} is a subgroup of G.

Proof. If a ∈ H, so is a−1 ∈ H since (a−1)n = (an)−1 = e. Moreover, if a, b ∈ H then
being abelian, (ab)n = anbn = e and ab ∈ H. Thus H passes the subgroup test. ▽

Now in order to conveniently refer to this subgroup H stated in the lemma, we shall
give it a special notation.

Definition. Let G be an abelian group with identity e and let n be a fixed positive
integer. We define the subgroup G(n) of G by G(n) = {x ∈ G | xn = e}.

Lemma 8. Suppose that gcd(m,n) = 1, and let G be an abelian group of order mn.
Then G ≃ G(m)×G(n).

Proof. To establish this lemma, we will employ Theorem 2, showing that G(m)G(n) =
G and G(m) ∩G(n) = {e}. The second part is easy: if x ∈ G(m) then the order of x
in G must divide m, and similarly with n in place of m. With gcd(m,n) = 1, we see
that G(m) ∩G(n) contains only elements of order one, i.e., only the identity element.

Next, note that for every x ∈ G, we have xm ∈ G(n) because (xm)n = x|G| = e.
And similarly, xn ∈ G(m). Now gcd(m,n) = 1 also implies that we can find a, b ∈ Z
such that 1 = am+ bn. Then for every x ∈ G, we have

x = xam+bn = (xm)a(xn)b ∈ G(n)G(m)

This establishes the claim that G(m)G(n) = G. ▽

Lemma 9. Suppose that gcd(m,n) = 1, and let G be an abelian group of order mn.
Then |G(m)| = m and |G(n)| = n.

Proof. We already have G ≃ G(m) × G(n). The case m = 1 would be trivial, for
then G(m) = {e}. So we assume there is a prime p which divides m. We claim that
|G(n)| is not a multiple of p, for otherwise by Cauchy’s theorem, G(n) would contain
an element of order p. It would follow by the definition of G(n) that p would divide
n, which is impossible as m and n have no common factors. By symmetry, we also
conclude that if a prime q divides G(n), then q does not divide G(m). However, we
know that |G(m)| × |G(n)| = mn. Hence by factoring mn into prime numbers, we see
why it is necessary to have |G(m)| = m and |G(n)| = n. ▽
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The preceding two lemmas can be easily extended to three or more subgroups. If
n is expressed as the product of distinct prime powers,

n = pe11 × pe22 × · · · × pekk

and if G is an abelian group of order n, then

G ≃ G(pe11 )×G(pe22 )× · · · ×G(pekk )

where each |G(peii )| = peii . Thus, we will now establish FTFAG by showing just one
more fact: that every abelian group of a prime power order is a direct product of cyclic
groups, each having a prime power order.

Lemma 10. Let p be a prime number and let G be an abelian group of order pk, for
any integer k ≥ 1. Then G is isomorphic to the direct product of cyclic groups.

Note that the cyclic groups satisfying the statement of the lemma will, of necessity,
each have order a power of p.

Proof. We use induction on k. The case k = 1 gives a cyclic group G of order p, so
there is nothing to prove. Otherwise, since there is only one prime involved, we may
find an element g ∈ G of order pm, such that xpm = e for all x ∈ G. Moreover, let
H be a subgroup of G which is maximal with respect to the condition ⟨g⟩ ∩H = {e}.
We will show that ⟨g⟩H = G, so that G ≃ ⟨g⟩ ×H. Then the proof will complete by
applying the induction hypothesis on H since H itself is an abelian group of order a
power of p, but less than that of G.

By contradiction, suppose there exists c ∈ G, but c ̸∈ ⟨g⟩H. We may assume that
cp ∈ ⟨g⟩H, for if not, simply replace c by cp. And if still cp

2 ̸∈ ⟨g⟩H, replace cp
2
by cp

3
,

etc. This process will not take more than m steps.
We may write cp = grh, for some h ∈ H. Since (cp)p

m−1
= e, we have grp

m−1 ∈ H,
and so grp

m−1
= e by the condition ⟨g⟩ ∩H = {e}. In particular, gr does not generate

⟨g⟩. It follows that gcd(r, pm) > 1, i.e., that p divides r.
Now let s = −r/p, and consider the subgroup K of G given by K = ⟨cgs⟩H. We

note that cgs ̸∈ H because c ̸∈ ⟨g⟩H. Thus, H is a proper subgroup of K. We will
finish the proof by showing that ⟨g⟩ ∩K = {e}, which contradicts the maximal choice
of the subgroup H.

Every element y ∈ K is of the form y = (cgs)th2 for some h2 ∈ H. Since

(cgs)p = cp(g−r/p)p = cpg−r = h ∈ H

we note that if t is a multiple of p, then y ∈ H. In that case, we have that y ̸∈ ⟨g⟩
unless y = e. On the other hand, suppose now gcd(t, p) = 1. Then there exist u, v ∈ Z
such that tu = 1 + pv. (Think of elements of the multiplicative group Up.) It follows
that

yu = (cgs)tuhu
2 = (cgs)1+pvhu

2 = (cgs)(cgs)pvhu
2 = (cgs)hvhu

2

So if y ∈ ⟨g⟩, then c ∈ ⟨g⟩H, which is false. We have therefore shown that the only
element in ⟨g⟩ ∩K is the identity. ▽
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Consequences of FTFAG

The fundamental theorem readily gives us a means to the classification of all finite
abelian groups according to their orders. We illustrate first with three examples.

1. The group U12 = {1, 5, 7, 11} under multiplication mod 12 is not cyclic. By
FTFAG, there are only two abelian groups of order 4, i.e., Z4 and Z2 × Z2. We
conclude that U12 ≃ Z2 × Z2.

2. The group U60 has ϕ(60) = 16 elements. There are five abelian groups of order
16, i.e.,

G1 = Z24

G2 = Z23 × Z2

G3 = Z22 × Z22

G4 = Z22 × Z2 × Z2

G5 = Z2 × Z2 × Z2 × Z2

Meanwhile, we look at the order |x| for each element x ∈ U60, i.e.,

x 1 7 11 13 17 19 23 29 31 37 41 43 47 49 53 59
|x| 1 4 2 4 4 2 4 2 2 4 2 4 4 2 4 2

Since we have elements of order 4, but not 8, we rule out G1, G2, and G5. Whereas
for G3, only three elements have order 2, i.e., (0, 2), (2, 0), and (2, 2). Therefore,
we go with G4—thus U60 ≃ Z4 × Z2 × Z2.

3. Consider the group U63 of order ϕ(63) = 36, again not cyclic. There are four
abelian groups of this order:

G1 = Z22 × Z32 ≃ Z36

G2 = Z22 × Z3 × Z3

G3 = Z2 × Z2 × Z32

G4 = Z2 × Z2 × Z3 × Z3

And again, we look at the table of orders in U63 and find only elements of orders
1, 2, 3, and 6. There is no doubt, U63 ≃ Z2 × Z2 × Z3 × Z3 (≃ Z6 × Z6).

(Here is another way to study the orders in U63 in a glance. The group U7 has
order 6, hence x6 ≡ 1 (mod 7) for all integers x with gcd(x, 7) = 1. Similarly,
x6 ≡ 1 (mod 9) if gcd(x, 9) = 1, because U9 too has order 6. Since gcd(7, 9) = 1,
CRT applies and x6 = 1 for all x ∈ U63. This explains why the order of every
element in U63 must divide 6.)

Exercise 11. For each given n, identify the group Un by writing it as the direct product
of cyclic groups of prime power orders.

(a) n = 27 (b) n = 32 (c) n = 45 (d) n = 72
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An interesting question follows: Given a positive integer n, how do we determine
the number of distinct abelian groups of order n? We can see in the three examples
above a pattern that plays on the exponent of each prime appearing in the factorization
of n. For example, the case n = 16 = 24 relies completely upon the different ways we
partition the exponent 4 into positive integers. This leads us to the following definition.

Definition. Where n ranges through the positive integers, define the partition function
p(n) to stand for the number of different partitions of n into positive integers.

For instance p(4) = 5, having seen the five ways we can partition 4, i.e.,

4 = 4

4 = 3 + 1

4 = 2 + 2

4 = 2 + 1 + 1

4 = 1 + 1 + 1 + 1

This function enables us to better express the number of distinct abelian groups of a
given order, as follows.

Theorem 12. Let n denote a positive integer which factors into distinct prime powers,
written n =

∏
pekk . Then there are exactly

∏
p(ek) distinct abelian groups of order n.

In particular, when n is square-free, i.e., all ek = 1, then there is a unique abelian
group of order n given by Zp1 × Zp2 × · · · × Zpk , which is just the cyclic group Zn, if
we may borrow CRT again.

Exercise 13. Count how many distinct abelian groups of the given order n.
(a) n = 1024 (b) n = 27000 (c) n = 30030 (d) n = 31104

The next observation will lead to an alternate but equivalent form in which FTFAG
can be presented. Let’s say we work with the group

G = Z24 × Z22 × Z2 × Z3 × Z3 × Z53 × Z53 × Z5 × Z5 × Z7

Let us write out these prime powers in matrix format, one row for each prime base,
left-justified, ordered from the greatest exponent to the least, as follows.

24 22 2
3 3
53 53 5 5
7

Observe that every column consists of distinct prime powers. As you probably have
guessed, we then apply CRT columnwise, to conclude that

G ≃ Z42000 × Z1500 × Z10 × Z5

Now going from left to right, the columns successively lose some primes without ever
gaining new ones. Hence, the sequence of the cyclic group orders, e.g., 42000, 1500, 10, 5,
consists of successive divisors—each number divides the preceding number. In other
words, the direct product is now made up of nested cyclic subgroups, since each factor
can be viewed as a subgroup of the preceding one. Thus, we state FTFAG alternately
in this second form. Again, you can easily supply the proof for uniqueness.
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Theorem 14 (FTFAG2). Every finite abelian group is isomorphic to the direct product
of a unique collection of cyclic groups of the form Zn1×Zn2×· · ·×Znk

, with the condition
that each ni is a multiple of ni+1 for 0 < i < k.

Exercise 15. Prove that if a group G is expressible as a direct sum such as described
in FTFAG2, then the cyclic group factors are uniquely determined by G.

Another useful consequence of FTFAG is a statement concerning the subgroups of
an abelian group. The result is somewhat an extension of Cauchy’s Theorem 6. We
will make this observation our last one for now.

Theorem 16. Let m be any positive integer and let G be an abelian group of order a
multiple of m. Then there exists a subgroup of G which has order m.

We give first an illustration of this claim which will also serve as a model for writing
the proof of Theorem 16. Suppose that G is a group of order 1,120,210,560, given by

G = Z23 × Z23 × Z2 × Z32 × Z32 × Z32 × Z5 × Z73 × Z7

This big number is a multiple of 6048; how do we find a subgroup of order 6048? First,
we look at the factorization of 6048, i.e., 6048 = 25 × 33 × 7. Then we select the cyclic
group factors of G corresponding to these prime factors, i.e., 2, 3, 7, largest exponent
first, just enough to exceed 25, 33, and 7. If necessary, we will take a subgroup of the
cyclic group in order to match the total exponent that we need for each prime.

23 23 2 32 32 32 5 73 7
| | | | |
23 23 32 32 73

| | |
22 3 7

In this way, the desired subgroup of order 6048 comes out to be

Z23 × Z22 × Z32 × Z3 × Z7

Note that we have freely used the fact that every cyclic group has a (unique) subgroup
of order any number that divides the order of the group.

Exercise 17. Now write the proof of Theorem 16.

A bit more partitions

The partition function p(n) is a fruitful topic in advanced number theory. It will not
do justice, and rather out of place, if we attempt to write a short chapter on partitions
simply because we encounter p(n) in discussing finite abelian groups. Nevertheless, we
just want to mention a few results which more or less relate to the evaluation of p(n).

We inspect that p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7, . . . up to p(10) =
42. The sequence then increases quite rapidly, exceeding one million partitions with
mere n = 61. In fact, the growth of p(n) is known to be sub-exponential and, more
specifically, p(n) is asymptotically close to the function

P (n) =
eπ
√

2n/3

4n
√
3
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What we mean is that lim P (n)
p(n)

= 1 as n → ∞. For example, P (104) ≈ 36.32 × 10105,

and that is roughly how big p(10, 000) is.
In dealing with a rapidly growing sequence like p(n), one would hope to find a recur-

rence relation of some sort. With p(n), there is no explicit way to define a recurrence
relation, but we may get help from the so-called intermediate partition functions.

Definition. Let pk(n) denote the number of partitions of n into positive integers, each
no smaller than k, where 1 ≤ k ≤ n. In particular, p1(n) = p(n).

Note that the partitions belonging to pk+1(n) form a subset of those belonging to
pk(n). Moreover, if a partition belongs to pk(n) but not to pk+1(n), then the partition
must be composed of a k term plus another partition belonging to pk(n− k), and vice
versa. We express this relation into the following identity.

pk(n) = pk+1(n) + pk(n− k) (1)

This is our recurrence relation. To start off, note that pk(n) = 1 whenever n/2 < k ≤ n
as it is impossible to partition n into two or more terms each of which is larger than
half of n. We then build a table, rows for n and columns for k, and start filling in by
rows according to (1), right to left, with the right half all 1’s. The leftmost entry is
what we are after, i.e., p1(n) = p(n). For convenience, we omit the terms pk(n) = 0
which apply when k > n.

n p(n) p2(n) p3(n) p4(n) p5(n) p6(n) p7(n) p8(n) p9(n) p10(n)
1 1
2 2 1
3 3 1 1
4 5 2 1 1
5 7 2 1 1 1
6 11 4 2 1 1 1
7 15 4 2 1 1 1 1
8 22 7 3 2 1 1 1 1
9 2 1 1 1 1 1
10 2 1 1 1 1 1

To make yourself familiar with the recursive pattern, try to complete the remaining two
rows, beginning with p3(9) = p4(9)+p3(9−3), and make sure you end with p(10) = 42.

Exercise 18. Extend this table until you find p(20). Moreover, note and prove an
alternate recurrence relation given by p(n) = 1 +

∑
pk(n − k), where the sum ranges

over k in the interval 1 ≤ k ≤ n/2.

As a final remark, we mention that the partition function p(n) can also be expressed
in its generating function, i.e.,

∞∑
n=0

p(n) xn =
∞∏
n=1

1

1− xn

by setting p(0) = 1. To see this identity, note that each factor appearing on the right
hand side is the expression for the sum of geometric series, i.e.,

(1 + x+ x2 + x3 + · · · )(1 + x2 + x4 + x6 + · · · )(1 + x3 + x6 + x9 + · · · ) · · ·
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Hence, the coefficient of xn is composed of how many 1’s (from the first bracket), 2’s
(second bracket), 3’s (third), etc., whose sum is n. The number of such combinations
is just the number of ways we partition n into positive integers, thus p(n).

Generating functions can sometimes be used to derive identities involving restricted
partitions. For example, the generating function for pk(n) is given by

∞∑
n=0

pk(n) x
n =

∞∏
n=k

1

1− xn

Then we could have established our recurrence relation (1) in this way:

∞∑
n=0

pk+1(n) x
n +

∞∑
n=k

pk(n− k) xn =
∞∏

n=k+1

1

1− xn
+ xk

∞∑
m=0

pk(m) xm

= (1− xk)
∞∏
n=k

1

1− xn
+ xk

∞∏
n=k

1

1− xn

= (1− xk + xk)
∞∏
n=k

1

1− xn

=
∞∑
n=0

pk(n) x
n

Obviously, the combinatorial proof of (1) is much shorter and clean. Nevertheless,
there are times when generating functions may seem to be the better approach—but
that is another lecture series.

Exercise 19. Using generating functions, show that the number of partitions of n into
odd positive integers equals the number of partitions of n into distinct positive integers.


